Math, asked by satyam9051, 1 year ago

1/a+b+x=1/a+1/b+1/x find the value of x

Answers

Answered by Muskan1101
27
Here's your answer!!

________________________________

 = > \frac{1}{a + b + x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}


 = > ( \frac{1}{a + b + x} - \frac{1}{x}) = ( \frac{1}{a} + \frac{1}{b} )


 = >( \frac{x - a - b - x}{ax + bx + {x}^{2} }) = (\frac{a + b}{ab} )


x \: and \: - x \: get \: cancelled


 = > \frac{( - a - b)}{ax + bx + {x}^{2} } = ( \frac{a + b}{ab})


 - (a + b)(ab) = (a + b)( {x}^{2} + ax + bx)


 \frac{ - (a + b)}{(a + b)} (ab) = {x}^{2} + ax + bx


==================
 \frac{ - (a + b)}{(a + b)} \: get \: cancelled
==================

 = > - ab = {x}^{2} + ax + bx


Now,


 = > {x}^{2} + ax + bx + ab = 0

 = > x(x + a) + b(x + a)


 = > (x + a)(x + b)


Therefore,

 = > x + a = 0 \\ = > x = - a

And,

 = > x + b = 0 \\ = > x = - b

Hence,

x can be either ( -a ) or ( -b)

_________________________________

Hope it helps you!! :)
Answered by Anonymous
4

1/a+b+x = 1/a+1/b+1/x

1/a+b+x = bx+ax+ab/abx

(a+b+x) (bx+ax+ab) = abx

abx+a²x+a²b+b²x+abx+ab²+bx²+ax²+abx = abx

(a+b)x² + (a²+b²)x + 3abx-abx + ab(a+b) = 0

(a+b)x² + (a²+b²)x + 2abx + ab(a+b) = 0

(a+b)x² + (a²+b²+2ab)x + ab(a+b) = 0

(a+b)x² + (a+b)²x + ab(a+b) = 0

(a+b) [x²+(a+b)x+ab] = 0

(a+b) [x²+ax+bx+ab] = 0

(a+b) [x(x+a)+b(x+a)] = 0

(a+b) [(x+a)(x+b) ] = 0

(x+a)(x+b) = 0/(a+b)

(x+a)(x+b)=0

x = -a and x = -b

Similar questions