Math, asked by abhikumar6789, 11 months ago

1/a+b+x=1/a+1/b+1/x, x≠0, -(a+b)​

Answers

Answered by tahseen619
6

Answer:

x = - a, - b

Step-by-step explanation:

 \frac{1}{ a + b + x}  =  \frac{1}{a} +  \frac{1}{b}   +  \frac{1}{x}  \\  \frac{1}{a + b + x}  -  \frac{1}{x}  =  \frac{1}{a}  +   \frac{1}{b}  \\  \frac{x - (a + b + x)}{x(a + b + x)}  =  \frac{b + a}{ab}  \\  \frac{x - a - b - x}{ax + bx +  {x}^{2} }  =  \frac{a + b}{ab}  \\  \frac{ - (a + b)}{ax + bx  + {x}^{2} }  =  \frac{a + b}{ab}  \\ \frac{ - 1}{ax + bx  + {x}^{2} }  =  \frac{1}{ab}  \\   - ab = ax + bx +  {x}^{2}  \\  {x}^{2}  + ax + bx + ab = 0 \\ x( x + a) + b(x + a) =0 \\  (x +a )(x +b )  = 0 \\ x =  - a \:  \:  \:  \:  \: x =  - b

Answered by Anonymous
33

GIVEN:-

 \bf \: •Equation:-  \large\frac{1}{a+b+x}  =   \frac{1}{a} +  \frac{1}{b} +    \frac{1}{x}

TO FIND OUT:-

 \bf\:• Roots \: of \: the \: given \: equation(x) =  {?} \\

SOLUTION:-

 \bf \implies \large \frac{1}{a + b + x}   - \frac{1}{x}  =  \frac{1}{a} +   \frac{1}{b}

 \bf \implies \:  \large \frac{x - (a + b + x)}{x(a + b + x)}  =  \frac{b + a}{ab}

 \bf \implies \:  \large \frac{ - (a + b)}{x(a + b + x)}  =  \frac{a + b}{ab}

 \bf \implies \: \large  \frac{ - 1}{x(a + b + x)}  =  \frac{1}{ab}

 \bf \implies \: (a + b + x)x =  - ab

 \bf \implies \: x {}^{2}  + (a + b)x + ab = 0

  \bf \implies \: (x + a)(x + b) = 0

 \bf \implies \: x + a = 0 \: or \: x + b = 0

  \bf\implies \: x =  - a \: or \: x =  - b

 \bf \: Hence  \: the  \: roots \: of \: the \: given \: equation  \: are \:  - a \: and - b

Similar questions