Math, asked by Bhavyabedi, 11 months ago

1.
A body starts from rest with a uniform acceleration
of 2 m s-2. Find the distance covered by the body
in 2 s.
Ans. 4 m​

Answers

Answered by Anonymous
10

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

\tt Given \begin{cases} \sf{Acceleration(a) \:  of \: the \: object  \: is \: 2ms^{-2}} \\ \sf{Time(t) \: taken \: by \: the  \: body \: is \: 2s} \end{cases}

_____________________________

To Find :

 \hookrightarrow \sf{Distance(s) \: covered \: by \: the \: body}

_____________________________

Solution :

We know that,

\large{\star{\underline{\boxed{\sf{s = ut + \frac{1}{2} at^2}}}}}

Here, we will use initial velocity (u) as 0. Because the object is started from the rest.

(Putting Values)

 \rightarrow \:  \sf{s = 0(2) +  \frac{1}{2}(2) {(2)}^{2}  } \\  \\  \sf{s = 0 +  \frac{1}{ \cancel2}  \times \cancel 2 \times 4} \\  \\  \sf{s = 4 \: m}

\large{\star{\underline{\boxed{\sf{Distance (s) = 4 \: m}}}}}

\rule{200}{2}

Verification :

For verification of the distance that distance is wrong or right then put value of distance

 \rightarrow \:  \sf{4 = 0(2) +  \frac{1}{2}(2) {(2)}^{2}  } \\  \\  \sf{4= 0 +  \frac{1}{ \cancel2}  \times \cancel 2 \times 4} \\  \\  \sf{4 \:m = 4 \: m}

Hence Verified

__________________________

Equation of motion :

  • v = u + at

  • S = ut + 1/2at^2

  • v^2 - u^2 = 2as

\rule{200}{2}

#answerwithquality

#BAL

Similar questions