1-a cube -b cube-3ab
factorise
Answers
Answered by
1
Identity / Property used :
x³ + y³ + z³ - 3xyz = ( x + y + z ) ( x² + y² + z² - xy - yz - zx )
Q : 1 - a³ - b³ - 3ab
We can also write this as :
( 1 )³ + ( - a )³ + ( - b )³ - 3 ( 1 ) ( a ) ( b )
Here, x = 1, y = - a, z = - b
= [ ( 1 ) + ( - a ) + ( - b ) ] [ ( 1 )² + ( - a )² + ( - b )² - ( 1 ) ( - a ) - ( - a ) ( - b ) - ( - b ) ( 1 ) ]
= ( 1 - a - b ) ( 1 + a² + b² + a - ab + b )
x³ + y³ + z³ - 3xyz = ( x + y + z ) ( x² + y² + z² - xy - yz - zx )
Q : 1 - a³ - b³ - 3ab
We can also write this as :
( 1 )³ + ( - a )³ + ( - b )³ - 3 ( 1 ) ( a ) ( b )
Here, x = 1, y = - a, z = - b
= [ ( 1 ) + ( - a ) + ( - b ) ] [ ( 1 )² + ( - a )² + ( - b )² - ( 1 ) ( - a ) - ( - a ) ( - b ) - ( - b ) ( 1 ) ]
= ( 1 - a - b ) ( 1 + a² + b² + a - ab + b )
Similar questions