Math, asked by chaudharynandlal69, 19 hours ago

1. A farmer connects a pipe of internal diameter 25 cm from a canal into a cylindrical tank in his field, which is 12 m in diameter and 2.5 m deep. If water flows through the pipe at the rate of 3.6 km/hr, in how much time will the tank be filled? Also, find the cost of water if the canal department charges at the rate of 0.07 per mº. [CBSE 2009C] 17​

Answers

Answered by gamingvignu
1

Answer:

Radius (r

1

) of circular end of pipe =

200

20

=0.1 m

⇒Area of cross-section =π×r

1

2

=π×(0.1)

2

=0.01π sq. m

⇒Speed of water =3 kilometer per hour =

60

3000

=50 meter per minute.

⇒Volume of water that flows in 1 minute from pipe = 50×0.01π=0.5π cu. m

⇒From figure 2, Volume of water that flows in t minutes from pipe = t×0.5π cu. m

⇒Radius (r

2

) of circular end of cylindrical tank =

2

10

=5 m

⇒Depth (h

2

) of cylindrical tank =2 m

⇒Let the tank be filled completely in t minutes.

⇒The volume of water filled in tank in t minutes is equal to the volume of water flowed in t minutes from the pipe.

⇒Volume of water that flows in t minutes from pipe = Volume of water in tank

Therefore, t×0.5π=πr

2

2

×h

2

⇒t×0.5=5

2

×2

⇒t=

0.5

25×2

⇒t=100

Therefore, the cylindrical tank will be filled in 100 minute.

Answered by sadiakhan34
2

Answer:

That is your answer in attachment.

Attachments:
Similar questions