Math, asked by sifatbentasthila, 4 months ago

1. A function f (x) is defined as follows:
x² +1
when x > 0
when x = 0 , Find the value of lim f (x).
when x < 0
so
x+1​

Answers

Answered by hardiksharma50
0

Answer:

hope brainliest

Step-by-step explanation:

Answer

h→0

lim

​  

f(0+h)=1+sinh=1=f(0−h)

Hence, f(x) is continuous at x=0.

Now, f  

(0  

+

)=  

h→0

lim

​  

 

h

1+sinh−1

​  

=  

h→0

lim

​  

 

h

sinh

​  

=1

f  

(0  

)=  

h→0

lim

​  

 

h

1−1

​  

=0

Hence, f(x) is not differentiable at x=0.

h→0

lim

​  

f(  

2

π

​  

−h)=  

h→0

lim

​  

1+sin(  

2

π

​  

−h)=2

h→0

lim

​  

f(  

2

π

​  

+h)=  

h→0

lim

​  

2+(h)  

2

=2

Hence, f(x) is continuous at x=  

2

π

​  

 

Now, f  

(  

+

)=  

h→0

lim

​  

 

h

2+h  

2

−2

​  

=0

f  

(  

)=  

h→0

lim

​  

 

−h

1+sin(  

2

π

​  

−h)−2

​  

=  

h→0

lim

​  

 

−h

cos(h)−1

​  

=  

h→0

lim

​  

 

−1

−sin(h)

​  

=0

Hence, f(x) is also differentiable at x=  

2

π

Similar questions