Math, asked by abhayje1981, 2 months ago

1. A rectangular field is of dimensions 25 m x 16.4 m. Two paths run parallel to the sides of the
rectangle through the centre of the field. The width of the longer path is 1.7 m and that of the
shorter path is 2 m. Find :
(i) the area of the paths.
(ii) the area of the remaining portion of the field.​

Answers

Answered by bravestone125
0

Answer:

x x  

Step-by-step explanation:

Answered by mathdude500
5

\large\underline\purple{\bold{Solution :-  }}

 \tt \: Length  \: of  \: rectangular \:  field,  \: l=25 \: m</p><p>

 \tt \: Width \:  of \:  rectangular \:  field, b=16.4 \: m

 \tt \:  \red{Length  \: of  \:  \: shorter \:  path, l_1=16.4 \: m  }

 \tt \:  \red{</p><p>Width \:  of \:  the  \: shorter  \: path, b_1=2 \: m}

 \tt \:  \green{Length  \: of \:  the \:  longer \:  path, l_2=25 \: m}

\tt \:  \green{Width  \: of  \: the \:  longer \:  path,  \: b_2=1.7 \: m \:  }

 \tt \:  \purple{Area  \: of \:  shorter \:  path, A_1=l_1×b_1}

 \tt \:  = 16.4 \times 2

 \tt \:  = 32.8 \:  {m}^{2}

 \tt \: \pink{ Area \:  of  \: longer  \: path, A_2=l_2×b_2}

\tt \:   = 25 \times 1.7

\tt \:  = 42.5 \:  {m}^{2}

\tt \:  Thus,  \: Area \:  of  \: the \:  path, \:  P=A_1+A_2−Area  \: of  \: common \:  path

\tt \:   = 32.8 + 42.5 - 2 \times 1.7

\tt \:   = 75.3 - 3.4

 \tt \:   = 71.9 \:  {m}^{2}

\tt \:  \red{Area  \: of \:  the  \: rectangular \:  field,  \: A=l×b}

\tt \:   = 25 \times 16.4

\tt \:   = 410 \:  {m}^{2}

\tt \:   \orange{Hence \:  area \:  of  \: the  \: remaining \:  portion \: of \: field}

\tt\implies  \boxed{ \red{ \bf \: \:Area  =  \: 410 - 71.9 = 338.1 \:  {m}^{2} }}

Attachments:
Similar questions