1. (A) Select and write the most appropriate alternative from those given below:
If a and ß are the zeroes of the polynomial x2 + 6x + 5 then (a +B) =
(a) - 36
(b) -6
(c) 6
(d) 36
Answers
Answered by
1
Option (b) is the correct one.
Since we have the form of a quadratic equation as:
Therefore -(b) = -6 is the answer.
Another way of looking at it is,
x^2 + 6x + 5 =0
x^2 +x + 5x + 5 =0
x(x+1) + 5(x+1) = 0
(x+1)(x+5)=0
Therefore, the roots will be -1 and -5 whose sum is equal to -6 and hence your answer.
Since we have the form of a quadratic equation as:
Therefore -(b) = -6 is the answer.
Another way of looking at it is,
x^2 + 6x + 5 =0
x^2 +x + 5x + 5 =0
x(x+1) + 5(x+1) = 0
(x+1)(x+5)=0
Therefore, the roots will be -1 and -5 whose sum is equal to -6 and hence your answer.
Similar questions