Physics, asked by seemashaikh359, 8 months ago

1) A spring ball of mass 0.5 kg is dropped
from some height. On falling freely for
10 s, it explodes into two fragments of
mass ratio 1:2. The lighter fragment
continues to travel downwards with
speed of 60 m/s. Calculate the kinetic
energy supplied during explosion​

Answers

Answered by shadowsabers03
7

Mass of the spring ball,

  • \sf{M=0.5\ kg}

Mass of the two fragments will be,

  • \sf{m_1=\dfrac{0.5}{3}\ kg}
  • \sf{m_2=\dfrac{0.5\times2}{3}\ kg}

As the spring ball is dropped, by first equation of motion, the speed of the spring ball after 10 seconds of dropping,

\sf{\longrightarrow V=u+gt}

\sf{\longrightarrow V=0+9.8\times10}

\sf{\longrightarrow V=98\ m\,s^{-1}}

The speed of the lighter fragment,

  • \sf{v_1=60\ m\,s^{-1}}

Let \sf{v_2} be the velocity of the heavier fragment.

Since the linear momentum of the system is conserved,

\sf{\longrightarrow MV=m_1v_1+m_2v_2}

\sf{\longrightarrow 0.5\times98=\dfrac{0.5}{3}\times60+\dfrac{0.5\times2}{3}\,v_2}

\sf{\longrightarrow 98=20+\dfrac{2v_2}{3}}

\sf{\longrightarrow v_2=117\ m\,s^{-1}}

Kinetic energy of the spring ball,

\sf{\longrightarrow K_b=\dfrac{1}{2}\,MV^2}

\sf{\longrightarrow K_b=\dfrac{1}{2}\times0.5\times98^2}

\sf{\longrightarrow K_b=2401\ J}

Kinetic energy of the lighter fragment,

\sf{\longrightarrow K_1=\dfrac{1}{2}\,m_1(v_1)^2}

\sf{\longrightarrow K_1=\dfrac{1}{2}\times\dfrac{0.5}{3}\times60^2}

\sf{\longrightarrow K_1=300\ J}

Kinetic energy of the heavier fragment,

\sf{\longrightarrow K_2=\dfrac{1}{2}\,m_2(v_2)^2}

\sf{\longrightarrow K_2=\dfrac{1}{2}\times\dfrac{0.5\times2}{3}\times117^2}

\sf{\longrightarrow K_2=2281.5\ J}

The kinetic energy supplied during explosion is equal to the change in kinetic energy.

Then,

\sf{\longrightarrow \Delta K=(K_1+K_2)-K_b}

\sf{\longrightarrow \Delta K=300\ J+2281.5\ J-2401\ J}

\sf{\longrightarrow\underline{\underline{\Delta K=180.5\ J}}}

Similar questions