Physics, asked by Radhekanha, 10 months ago

1) A spring of constant K = 100N/m is extended from an initially released position to an extension of 10cm .What is the
(1) Ws
(2) ∆Us


2) Refer figure..​

Attachments:

Answers

Answered by ItSdHrUvSiNgH
4

Explanation:

 \huge\bf{ \mid{ \overline{ \underline{{Question:-} \mid}}}}

1) A spring of constant K = 100N/m is extended from an initially released position to an extension of 10cm .What is the

(1) Work done by spring

(2) ∆U of spring

 \huge\bf{ \mid{ \overline{ \underline{{Answer:-} \mid}}}}

 \large  \red{Given \: that} \\  \\ K = 100N  {m}^{ - 1}  \\  \\ x1 = 0m \\  \\ x2 = 10cm = 0.1m

 \\  \huge \purple{Formula} \\  \\  \Delta U  = -  W_{s} \\  \\ W_{s} =  \frac{1}{2}  \times K \times ( {x_{1}}^{2}  -  {x_{2}}^{2} )

 \implies W_{s} = \frac{1}{2}   \times K \times ( {x_{1}}^{2}  -  {x_{2} }^{2})   \\  \\  \implies W_{s} =  \frac{1}{2}  \times 100 \times (  - { ( 0.1})^{2} ) \\  \\  \implies W_{s} = 50 \times ( - 0.01) \\  \\ \boxed{  \implies W_{s} =  - 0.5J} \\  \\ Now \\  \\  \boxed{ \Delta U =  - W_{s}  =  + 0.5J} \\  \\ therefore \:  \: your \:  \: answer \:  \: is \implies \\  \\ \huge \boxed{ W_{s} = - 0.5 J \:  \:  \:  \: and \:  \:  \:  \: \Delta  U = 0.5J}

2) \\  \\  \huge\bf{ \mid{ \overline{ \underline{{question} \mid}}}} \\  \\

When \:  \:  the \:  \:  spring \:  \:  is  \:  \: compressed \:  \:  \\  by \:  \:  distance \:  \:  'x' \:  \:  it's \:  \:  potential \:  \:  energy \:  \:  is \:  \:  U_{1} \\  .It \:  \:  is \:  \:  further  \:  \: compressed  \:  \: by \:  \:  distance \:  \: \\   '2x'  \:  \: it's  \:  \: potential  \:  \: energy \:  \:  now \:  \:  is \:  \:  U_{2}  \\ .Find \:  \:  U_{1} : U_{2}

2) \\  \\  \huge\bf{ \mid{ \overline{ \underline{{answer} \mid}}}} \\  \\ \large{formula :-} \\ \\ W_{spring} = \frac{1}{2} \times K \times ({x_{1} }^{2}-{ x_{2}}^{2} \\ \\ \implies W_{spring} = \frac{1}{2} \times K \times ({x_{1} }^{2}-{ x_{2}}^{2} \\ \\ U_{1} = \frac{1}{2} K ({x}^{2}) ------(1) \\ \\ Now \: \: U_{2}  \\ \: \: it \: \: will \: \: x+2x=3x \\ \\ W_{spring} = \frac{1}{2} \times K({(3x)}^{2} - {x}^{2}) \\ \\ W_{spring} = \frac{1}{2} \times K(9{x}^{2} - {x}^{2}) \\ \\ W_{spring} = \frac{1}{2} \times K(8{x}^{2} ) \\ \\ Now, from (1) \\ \\ U_{2} = 8 (\frac{1}{2} K {x}^{2}) \\ \\ \implies U_{2} = 8 \times U_{1} \\ \\ \huge\boxed{ \frac{U_{1}}{U_{2}} = \frac{1}{8} }

Similar questions