Math, asked by sabrina266, 4 months ago

1) a⁴ + 4a²-5
2) x²y²+ 23xy - 420
please Answer

Answers

Answered by Anonymous
32

Question :

Solve :

1) a⁴ + 4a²-5

2) x²y²+ 23xy - 420

Solution :

1) \sf\:a^4+4a^2-5

Let a²= t , then

\sf=t^2+4t-5

By Quadratic Formula

\sf\:x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

\sf\implies\:t=\dfrac{-4\pm\sqrt{4^2-4(-5)}}{2}

\sf\implies\:t=\dfrac{-4\pm\sqrt{16+20}}{2}

\sf\implies\:t=\dfrac{-4\pm\sqrt{36}}{2}

\sf\implies\:t=\dfrac{-4\pm6}{2}

\sf\implies\:t=1\:or-1

t can't be -1 , then

\sf\implies\:a^2=1

\sf\implies\:a^2-1=0

\sf\implies\:(a+1)(a-1)=0

\sf\implies\:a=\pm1

2) \sf\:x^2y^2+23xy-420

Let x²y² = t , then

\sf=t+23xy-420

By Quadratic Formula

\sf\:x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

\sf\implies\:t=\dfrac{-23\pm\sqrt{23^2-4(-420)}}{2}

\sf\implies\:t=\dfrac{-23\pm\sqrt{529+1680}}{2}

\sf\implies\:t=\dfrac{-23\pm\sqrt{2209}}{2}

\sf\implies\:t=\dfrac{-23\pm\sqrt{529+1680}}{2}

\sf\implies\:t=\dfrac{-23\pm47}{2}

\sf\implies\:t=\dfrac{-23+47}{2}\:or\dfrac{-23-47}{2}

\sf\implies\:t=12\:or-35

t can't be -35

\sf\implies\:x^2y^2=12

\sf\implies\:x^2y^2-12=0

\sf\implies\:(xy+\sqrt{12})(xy-\sqrt{12})=0

\sf\implies\:xy=\pm\sqrt{12}

Answered by Mister360
4

Answer:

Solution-1:-

Given Polynomial

\sf a^4+4a^2-5

  • We have to find a

Let a^2=x

  • Then convert it as a equation

\quad {:}\longrightarrow\tt x^2+4x-5=0

  • Use midterm factorisation

\quad {:}\longrightarrow\tt x^2+5x-x-5=0

  • Factorise

\quad {:}\longrightarrow\tt x (x+5)-1 (x+5)=0

\quad {:}\longrightarrow\tt (x+5)(x-1)=0

\quad {:}\longrightarrow\tt x+5=0\quad or\quad x-1=0

\quad {:}\longrightarrow\tt x=-5\quad or \quad x=1

  • a can't be -5
  • thus

\quad {:}\longrightarrow\tt a^2=x

\quad {:}\longrightarrow\tt a^2 =1

\quad {:}\longrightarrow\tt a^2-1=0

  • Use algebraic identity

\boxed{\sf a^2-b^2=(a+b)(a-b)}

\quad {:}\longrightarrow\tt (a)^2-(1)^2=0

\quad {:}\longrightarrow\tt (a+1)(a-1)=0

\quad {:}\longrightarrow\tt a+1=0\quad or\quad a-1=0

\quad {:}\longrightarrow\tt a=-1 \:or\: a=1

\therefore\sf a=\underline{+}1

Solution-2:-

Given Polynomial

\sf x^2y^2+23xy-420

Let

\sf x^2y^2=d

  • convert it as equation

\quad {:}\longrightarrow\tt d+23xy-420=0

  • substract -23xy from both sides

\quad {:}\longrightarrow\tt d+\cancel {23xy}-\cancel{23xy}=0-23xy

\quad {:}\longrightarrow\tt d-420=-23xy

  • Add 420 on both sides

\quad {:}\longrightarrow\tt d-420+420=-23xy+420

  • Simplify

\quad {:}\longrightarrow\tt d=-23xy+420

Similar questions