1. (A6B)H to decimal 2. (735) to binary 3. (110001010111) to hexadecimal 4. (375)8 to binary 5. (A519)H to binary
Answers
Answered by
0
Answer:
1.2667
2.1011011111
3.C57
4.011111101
5.1010010100011001
Explanation:
1.(A6B)₁₆ = (10 × 16²) + (6 × 16¹) + (11 × 16⁰) = (2667)₁₀
2.remainders: Divisionby 2 Quotient Remainder
(Digit) Bit #
(735)/2 367 1 0
(367)/2 183 1 1
(183)/2 91 1 2
(91)/2 45 1 3
(45)/2 22 1 4
(22)/2 11 0 5
(11)/2 5 1 6
(5)/2 2 1 7
(2)/2 1 0 8
(1)/2 0 1 9
= (1011011111)2
3.110001010111
= 1100 0101 0111
= C 5 7
= C57
4.375
= 3 7 5
= 011 111 101
= 011111101
5.A519
= A 5 1 9
= 1010 0101 0001 1001
= 1010010100011001
Similar questions