Math, asked by psputariha2019a, 4 months ago

1.
AB is a diameter of a circle, whose centre is (3,5) and B is (6,2). find the coordinate of point A​

Answers

Answered by pandaXop
44

B = (0 , 8)

Step-by-step explanation:

Given:

  • AB is diameter of circle.
  • Center of AB is (3,5)
  • Coordinate of B is (6,2)

To Find:

  • What is the coordinate of A ?

Solution: Let the coordinate of A be (x¹ , y¹).

  • A = (x¹ , y¹)

  • O (centre of AB) = (3 , 5) or (a , b)

  • B = (x² , y²)

Applying mid point formula

For x coordinate = + /2

For y coordinate = + /2

➟ a = x¹ + x²/2

➟ 3 = x¹ + 6/2

➟ 3 × 2 – 6 = x¹

➟ 0 = x¹

Now for y coordinate

➼ b = y¹ + y²/2

➼ 5 = y¹ + 2/2

➼ 5 × 2 – 2 = y¹

➼ 8 = y¹

Hence, the coordinate of point B is (0 , 8)

Attachments:

MystícPhoeníx: :wow: :D
pandaXop: Thanks ☃️
Answered by SavageBlast
22

Given:-

  • AB is a diameter of a circle, whose centre is (3,5) and B is (6,2).

To Find:-

  • Coordinate of point A.

Theorem Used:-

  • {\boxed{\bf{\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}=x,y}}}

Solution:-

Let Point A be \bf(x_1 , y_1)

\huge{\bf{\underline{For \:x_1 :}}}

Using,

  • \sf :\implies\: x=\dfrac{x_1+x_2}{2}

Here,

  • \bf x=3

  • \bf x_2=6

Putting values,

\sf :\implies\: 3=\dfrac{x_1+6}{2}

\sf :\implies\: x_1+6=6

\sf :\implies\: x_1=6-6

{\bf{\red{\underline{:\implies\: x_1=0}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\bf{\underline{For \:y_1 :}}}

Using,

  • \sf :\implies\: y=\dfrac{y_1+y_2}{2}

Here,

  • \bf y=5

  • \bf y_2=2

Putting values,

\sf :\implies\: 5=\dfrac{y_1+2}{2}

\sf :\implies\: y_1+2=10

\sf :\implies\: y_1=10-2

{\bf{\red{\underline{:\implies\: y_1=8}}}}

Hence, The Coordinates of point A is (0 , 8).

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions