Math, asked by maratheharsh367, 4 months ago

1. An angle is equal to 5 times its complement, then its measure is:
a. 25° b. 50° C. 75​

Answers

Answered by Anonymous
18

\large\sf\underline{Given\::}

  • An angle is equal to 5 times it's complement .

\large\sf\underline{To\:find\::}

  • Measure of that angle .

\large\sf\underline{Assumption\::}

Let the angle be :

  • x

\large\sf\underline{Solution\::}

We know that ,

\sf\:Two\:angles\:a\:and\:b\:are\: complementary\:when\:

\small{\underline{\boxed{\mathrm\pink{a+b=90°}}}}

So for assumed angle x , the complement will be ( 90 - x )° .

Now according to the question :

An angle = 5 times it's complement

  • Expressing it into mathematical form

\sf\:x=5 \times (90-x)

\sf\implies\:x=450-5x

  • Transposing 5x to the other side

\sf\implies\:x+5x=450

\sf\implies\:6x=450

\sf\implies\:x=\frac{450}{6}

\sf\implies\:x=\cancel{\frac{450}{6}}=\frac{225}{3}

{\sf{{\pink{\implies\:x\:=\:75°}}}}

As we got the value of x as 75° . Let's substitute its value in the assumed complement angle :

\sf\to\:90-x\:=\:90-75\:=\: 15°

\dag\:\underline{\sf Hence\:the\:value\:of\:the\: required\:angle \:=\:75°.}

!! Hope it helps !!

Answered by Anonymous
7

\large\sf\underline{Given\::}

An angle is equal to 5 times it's complement .

\large\sf\underline{To\:find\::}

Measure of that angle .

\large\sf\underline{Assumption\::}

Let the angle be :

x

\large\sf\underline{Solution\::}

We know that ,

\sf\:Two\:angles\:a\:and\:b\:are\: complementary\:when\:

\small{\underline{\boxed{\mathrm\pink{a+b=90°}}}}

So for assumed angle x , the complement will be ( 90 - x )° .

Now according to the question :

An angle = 5 times it's complement

Expressing it into mathematical form

\sf\:x=5 \times (90-x)

\sf\implies\:x=450-5x

Transposing 5x to the other side

\sf\implies\:x+5x=450

\sf\implies\:6x=450

\sf\implies\:x=\frac{450}{6}

\sf\implies\:x=\cancel{\frac{450}{6}}=\frac{225}{3}

{\sf{{\pink{\implies\:x\:=\:75°}}}}

As we got the value of x as 75° . Let's substitute its value in the assumed complement angle :

\sf\to\:90-x\:=\:90-75\:=\: 15°

\dag\:\underline{\sf Hence\:the\:value\:of\:the\: required\:angle \:=\:75°.}

!! Hope it helps !!

copied :-)

Similar questions