Physics, asked by krishnakrish57, 8 months ago

1. An object is placed at a distance of 4 cm from a concave lens of focal length 12 cm. Find the position and nature of the image.​

Answers

Answered by Anonymous
58

Given :

↗ Distance of object = 4cm

↗ Focal length = 12cm

↗ Type of lens : concave

To Find :

⟶ Position and nature of image.

SoluTion :

:\implies\sf\:\dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f}

:\implies\sf\:\dfrac{1}{v}-\dfrac{1}{(-4)}=\dfrac{1}{(-12)}

:\implies\sf\:\dfrac{1}{v}=-\dfrac{1}{12}-\dfrac{1}{4}

:\implies\sf\:\dfrac{1}{v}=\dfrac{-1-3}{12}

:\implies\sf\:\dfrac{1}{v}=\dfrac{-4}{12}

:\implies\boxed{\bf{v=-3\:cm}}

Nature of image :

  • Virtual
  • Erect
Answered by Anonymous
337

\huge{\bold{\star{\fcolorbox{black}{lightgreen}{Answer}}}}⋆

Position of image : -3 cm

Nature of image :

  • Virtual
  • Erect

\huge{\bold{\star{\fcolorbox{black}{lightgreen}{Explanation}}}}⋆

\blue{\bold{\underline{\underline{Given}}}}

  • Distance of object = 4cm
  • Lens(Type) = Concave
  • Focal length = 12cm

\blue{\bold{\underline{\underline{To \: Find}}}}

  • Position and nature of the image

\blue{\bold{\underline{\underline{Formula}}}}

{\boxed{\rm{\dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f}}}}

\blue{\bold{\underline{\underline{Solution}}}}

Put the values,

\dfrac{1}{v}-\dfrac{1}{(-4)}=\dfrac{1}{(-12)}

\implies \: \dfrac{1}{v}=-\dfrac{1}{12}-\dfrac{1}{4}

\implies \: \dfrac{1}{v}=\dfrac{-1-3}{12}

\implies \: \dfrac{1}{v}=\dfrac{-4}{12}

\implies v=-3\:cm

Similar questions