1 and 8 are the first two natural numbers for which 1 + 2 + 3 + ...... + n is a perfect square. which number is the 4th such number?
Answers
Answered by
0
Answer:
The 4th such number is 288.
Step-by-step explanation:
Did a computer search in Python and got:
- 1 = 1×2/2 = 1×1 = 1²
- 1 + 2 + … + 8 = 8×9/2 = 4×9 = 2²×3² = 6²
- 1 + 2 + … + 49 = 49×50/2 = 49×25 = 7²×5² = 35²
- 1 + 2 + … + 288 = 288×289/2 = 144×289 = 12²×17² = 204²
So the first 4 such numbers are 1, 8, 49, 288.
Hope that helps.
Similar questions