Math, asked by kanikamehra62, 5 months ago

1. ara.
Length of rectangle is 10 cm more than twice of breadth. Perimeter is 540 cm. Find Length and breadth and also find area.​

Answers

Answered by Anonymous
9

Answer:

Step-by-step explanation:perimeter of the rectangle =2(l+b)30=2(10+b)30/2=10+b15=10+b15-10=b5cm=b10cm=l

Answered by SarcasticL0ve
31

Given:

  • Length of rectangle is 10 cm more than twice of breadth.
  • Perimeter of Rectangle = 540 cm

⠀⠀⠀

To find:

  • Length & breadth of rectangle
  • Area of rectangle

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

☯ Let's consider breadth of rectangle be x cm.

Then, Length of rectangle will be (2x + 10) cm

⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

  • Perimeter of Rectangle = 540 cm

⠀⠀⠀

 \bf{\dag}\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Perimeter_{\;(rectangle)} = 2(length + breadth)}}}}\\ \\

:\implies\sf 2[(2x + 10) + x] = 540\\ \\

:\implies\sf (2x + 10) + x = \cancel{ \dfrac{540}{2}}\\ \\

:\implies\sf 3x + 10 = 270\\ \\

:\implies\sf 3x = 270 - 10\\ \\

:\implies\sf 3x = 260\\ \\

:\implies\sf x = \cancel{ \dfrac{260}{3}}\\ \\

:\implies{\underline{\boxed{\frak{\purple{x = 86.7}}}}}\;\bigstar\\ \\

Therefore,

⠀⠀⠀

  • Breadth of rectangle, x = 86.7 cm
  • Length of rectangle, (2x + 10) = 2 × 86.7 + 10 = 173.4 + 10 = 183.4 cm

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

 \bf{\dag}\;{\underline{\frak{Now,\:Finding\:area\:of\:rectangle,}}}\\ \\

\star\;{\boxed{\sf{\pink{Area_{\;(rectangle)} = length \times breadth}}}}\\ \\

:\implies\sf Area_{\;(rectangle)} = 183.4 \times 86.7\\ \\

:\implies{\underline{\boxed{\frak{\purple{Area_{\;(rectangle)} = 15900.78\:cm^2}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Area\:of\:rectangle\:is\; \bf{15900.78\:cm^2}.}}}


TheValkyrie: Amazing!
Similar questions