English, asked by mulasunny186, 6 months ago

1. Authan maths:
0
Find the sum of the zeroes of polynomial x²-6x+7​

Answers

Answered by Mysterioushine
2

GIVEN :-

  • p(x) = x² - 6x + 7

TO FIND :-

  • The sum of zeroes of the given polynomial

SOLUTION :-

Let the roots of the given quadratic equation be α , β . Then ;

: \implies{\sf{\alpha=\dfrac{-b+\sqrt{b^2-4ac}}{2a}}}

: \implies{\sf{\beta=\dfrac{-b-\sqrt{b^2-4ac}}{2a}}}

where ,

  • a is coefficient of x²
  • b is coefficient of x
  • c is constant

Now , From the given polynomial ;

  • a = 1
  • b = -6
  • c = 7

First let us find the value of α. Now , By substituting the values we get ;

  \\  : \implies \sf \alpha \:  =  \frac{ - ( - 6) +  \sqrt{( - 6) {}^{2} - 4(1)(7) } }{2(1)}  \\

 \\  :  \implies \sf \alpha =  \frac{6 +  \sqrt{36 - 28} }{2}  \\

 \\ : \implies \sf \alpha =  \dfrac{6 + \sqrt{8}  }{2}  \\

 \\  :  \implies \sf  \alpha \:  =  \frac{6 + 2 \sqrt{2} }{2}  \\

 \\   : \implies \sf \alpha = \dfrac{ 2(3 +  \sqrt{2})}{2}  \\

 \\  :  \implies \sf \alpha \:  =  3 +  \sqrt{2}

• Now let us Find the value of β ,

   \\ : \implies  \sf \beta =  \frac{ - ( - 6) -  \sqrt{( - 6) {}^{2} - 4(1)(7) } }{2(1)}  \\

   \\ : \implies \sf \beta =  \frac{6  -  \sqrt{36 - 28} }{2}  \\

 \\  :  \implies \sf \beta  =  \frac{6 -  \sqrt{8} }{2}  \\

\\ :\implies\sf\beta=\dfrac{6-2\sqrt{2}}{2}\\

   \\ : \implies \sf \beta =  \frac{2(3 -  \sqrt{2} )}{2}  \\

  \\   : \implies \sf \beta = 3 -  \sqrt{2}  \\

Now we need to find the sum of zeroes . sum of zeroes is nothing but the addition of α and β.

 \\   : \implies \sf \alpha +  \beta = (3 +  \sqrt{2} )  + (3 -  \sqrt{2} )  \\

 \\   : \implies \sf \alpha \:  +  \beta \:  = 6 + 0 \\

 \\   : \implies \underline{\boxed{\sf {\alpha +  \beta = 6}}} \\

Hence , The sum of the zeroes of x² - 6x + 7 is 6.

Answered by Anonymous
0

Answer:

6 . Sum of the roots of x^2-6x+7 is 6

Similar questions