Math, asked by atchayrm, 10 hours ago

1 / b+c + 1/c+a = 2/ a+b, then the value of a^2 + b^2 / c2 is

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

\rm \: \dfrac{1}{b + c}  + \dfrac{1}{c + a}  = \dfrac{2}{a + b}  \\

can be rewritten as

\rm \: \dfrac{1}{b + c}  + \dfrac{1}{c + a}  = \dfrac{1}{a + b} + \dfrac{1}{a + b}   \\

can be further rearrange as

\rm \: \dfrac{1}{a + b} - \dfrac{1}{b + c}  = \dfrac{1}{c + a} - \dfrac{1}{a + b}   \\

\rm \: \dfrac{b + c - (a + b)}{(a + b)(b + c)}  = \dfrac{a + b - (c + a)}{(c + a)(a + b)}\\

\rm \: \dfrac{b + c - a  -  b}{(b + c)}  = \dfrac{a + b - c -  a}{(c + a)}\\

\rm \: \dfrac{c - a}{b + c}  = \dfrac{b - c}{c + a}\\

\rm \: (c + a)(c - a) = (b + c)(b - c) \\

\rm \:  {c}^{2} -  {a}^{2} =  {b}^{2} -  {c}^{2} \\

\rm \:\bigg [ \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: \bigg] \\

\rm \:  {c}^{2} + {c}^{2} =  {b}^{2} +  {a}^{2} \\

\rm \:  2{c}^{2} =  {a}^{2} +  {b}^{2} \\

\bf\implies \:\boxed{ \bf{ \:\dfrac{ {a}^{2}  +  {b}^{2} }{ {c}^{2} } = 2 \: }} \\

Similar questions