1/bc(b-a)(c-a)+1/ca(c-b)(a-b)+1/ab(a-c)(b-c)
Answers
Answer:
(a−b)(a−c)
1
+
(b−c)(b−a)
1
+
(c−a)(c−b)
1
=0
Solution:
Given,
\frac{1}{(a-b)(a-c)}+\frac{1}{(b-c)(b-a)}+\frac{1}{(c-a)(c-b)}
(a−b)(a−c)
1
+
(b−c)(b−a)
1
+
(c−a)(c−b)
1
Simplifying the equation we get,
\Rightarrow \frac{1}{(a-b)(a-c)}+\left(\frac{1}{(b-c)(-(a-b))}\right)+\left(\frac{1}{(-(a-c))(-(b-c))}\right)⇒
(a−b)(a−c)
1
+(
(b−c)(−(a−b))
1
)+(
(−(a−c))(−(b−c))
1
)
\Rightarrow \frac{1}{(a-b)(a-c)}-\frac{1}{(b-c)(a-b)}+\frac{1}{(a-c)(b-c)}⇒
(a−b)(a−c)
1
−
(b−c)(a−b)
1
+
(a−c)(b−c)
1
\Rightarrow \frac{(b-c)-(a-c)+(a-b)}{(a-b)(a-c)(b-c)}⇒
(a−b)(a−c)(b−c)
(b−c)−(a−c)+(a−b)
Grouping the terms,
\Rightarrow \frac{b-c-a+c+a-b}{(a-b)(a-c)(b-c)}⇒
(a−b)(a−c)(b−c)
b−c−a+c+a−b
\Rightarrow \frac{0}{(a-b)(a-c)(b-c)} = 0⇒
(a−b)(a−c)(b−c)
0
=0
(0 divided by any number is 0)