1 by sec theta minus tan theta minus 1 by cos theta is equal to 1 by cos theta minus 1 by sec theta + tan theta
Answers
Answer:
Given that, we have to prove
\frac{1}{sec\ \theta - tan\ \theta} - \frac{1}{cos\ \theta} = \frac{1}{cos\ \theta} - \frac{1}{sec\ \theta + tan\ \theta}
sec θ−tan θ
1
−
cos θ
1
=
cos θ
1
−
sec θ+tan θ
1
Take the LHS:
\begin{gathered}\frac{1}{sec\ \theta - tan\ \theta} - \frac{1}{cos\ \theta}\\\\\frac{1}{sec\ \theta - tan\ \theta} \times \frac{sec\ \theta + tan\ \theta}{sec\ \theta + tan\ \theta} - \frac{1}{cos\ \theta}\\\\\frac{sec\ \theta + tan\ \theta}{sec^2 \theta - tan^2 \theta} - \frac{1}{cos\ \theta}\\\\\end{gathered}
sec θ−tan θ
1
−
cos θ
1
sec θ−tan θ
1
×
sec θ+tan θ
sec θ+tan θ
−
cos θ
1
sec
2
θ−tan
2
θ
sec θ+tan θ
−
cos θ
1
We know that,
sec^2\ \theta - cos^2\ \theta = 1sec
2
θ−cos
2
θ=1
Also,
sec\ \theta = \frac{1}{cos\ \theta}sec θ=
cos θ
1
Therefore,
\begin{gathered}\frac{sec\ \theta + tan\ \theta}{1} - sec\ \theta\\\\sec\ \theta + tan\ \theta - sec\ \theta\\\\tan\ \theta\end{gathered}
1
sec θ+tan θ
−sec θ
sec θ+tan θ−sec θ
tan θ
Now take the RHS:
\begin{gathered}\frac{1}{cos\ \theta} - \frac{1}{sec\ \theta + tan\ \theta}\\\\ \frac{1}{cos\ \theta} - \frac{1}{sec\ \theta + tan\ \theta} \times \frac{sec\ \theta - tan\ \theta}{sec\ \theta - tan\ \theta}\\\\ \frac{1}{cos\ \theta} - \frac{sec\ \theta - tan\ \theta}{sec^2 \theta -tan^2 \theta}\\\\ \frac{1}{cos\ \theta} - \frac{sec\ \theta - tan\ \theta}{1}\\\\sec\ \theta - sec\ \theta + tan\ \theta\\\\tan\ \theta\end{gathered}
cos θ
1
−
sec θ+tan θ
1
cos θ
1
−
sec θ+tan θ
1
×
sec θ−tan θ
sec θ−tan θ
cos θ
1
−
sec
2
θ−tan
2
θ
sec θ−tan θ
cos θ
1
−
1
sec θ−tan θ
sec θ−sec θ+tan θ
tan θ
Thus,
LHS = RHS
Thus proved
Explanation:
Hope it helps
MARK AS BRAINLIEST ANSWER