Math, asked by alkasinha6552, 11 months ago

1. Calculate the amount and compound interest on
(1) 15000 for 2 years at 10% per annum compounded annually
(ii) ? 156250 for 1 years at 8% per annum compounded half yearly
(ii) 100000 for 9 months at 4% per annum compounded quarterly​

Answers

Answered by BrainlyConqueror0901
31

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Amount=18150\:rupees}}}

\green{\tt{\therefore{Compound\:Interest=3150\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }} \\  \tt:\implies Principal(p) = 15000\:rupees \\  \\ \tt:\implies Rate\%(r)= 10\% \\  \\ \tt:\implies Time(t) = 2 \: years \\  \\ \red{\underline \bold{To \: Find : }} \\  \tt:  \implies Amount =?  \\  \\  \tt:  \implies Compound \: Interest  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies A = p(1 +  \frac{r}{100} )^{t}  \\  \\ \tt:  \implies A =15000 \times (1 +  \frac{10}{100} )^{2}  \\  \\ \tt:  \implies A =15000 \times (1 + 0.1)^{2}  \\  \\ \tt:  \implies A =15000 \times 1.1^{2}  \\  \\ \tt:  \implies A =15000 \times 1.21 \\  \\  \green{\tt:  \implies A =18150 \: rupees} \\  \\  \bold{For \: Compound \: Interest : } \\ \tt:  \implies C.I=A - p \\  \\ \tt:  \implies C.I=18150 - 15000 \\  \\  \green{\tt:  \implies C.I=3150 \: rupees}

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Amount=169000\:rupees}}}

\green{\tt{\therefore{Compound\:Interest=12750\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }} \\  \tt:\implies Principal(p) = 156250\:rupees\\  \\ \tt:\implies Rate\%(r)= 8\% \\  \\ \tt:\implies Time(t) = 1\: years \\  \\ \red{\underline \bold{To \: Find : }} \\  \tt:  \implies Amount = ? \\  \\  \tt:  \implies Compound \: Interest  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies A = p(1 +  \frac{ \frac{r}{2} }{100} )^{2t}  \\  \\ \tt:  \implies A=156250 \times (1 +  \frac{8}{2 \times 100} )^{2}  \\  \\ \tt:  \implies A=156250 \times (1 + 0.04)^{2}  \\  \\ \tt:  \implies A =156250 \times 1.04^{2}  \\  \\ \tt:  \implies A=156250 \times 1.0816 \\  \\  \green{\tt:  \implies A =169000 \: rupees} \\  \\  \bold{For \: Compound \: Interest : } \\ \tt:  \implies C.I =A - p \\  \\ \tt:  \implies C.I=169000- 156250 \\  \\  \green{\tt:  \implies C.I =12750 \: rupees}

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Amount=103030.1\:rupees}}}

\green{\tt{\therefore{Compound\:Interest=3030.1\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }} \\  \tt:\implies Principal(p) = 100000\:rupees\\  \\ \tt:\implies Rate\%(r)= 4\% \\  \\ \tt:\implies Time(t) = 9 \: month \\  \\ \red{\underline \bold{To \: Find : }} \\  \tt:  \implies Amount =?  \\  \\  \tt:  \implies Compound \: Interest  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies A= p(1 +  \frac{ \frac{r}{4} }{100} )^{4t}  \\  \\ \tt:  \implies A =100000 \times (1 +  \frac{4}{4 \times 100} )^{3}  \\  \\ \tt:  \implies A =100000 \times (1 + 0.01 )^{3}  \\  \\ \tt:  \implies A=100000 \times 1.01^{3}  \\  \\ \tt:  \implies A =100000 \times 1.030301 \\  \\  \green{\tt:  \implies A = 103030.1 \: rupees} \\  \\  \bold{For \: Compound \: Interest : } \\ \tt:  \implies C.I =A - p \\  \\ \tt:  \implies C.I=103030.1- 100000 \\  \\  \green{\tt:  \implies C.I =3030.1 \: rupees}


xItzKhushix: Amazing Explanation! :0
EliteSoul: Nice! O.o
BrainlyConqueror0901: thnx khushi and Mrperfect
Answered by Anonymous
50

\huge{\mathfrak{Question}}

(i) Given,

Principal = 15000

Rate = 10%

Time = 2 years

Therefore, finding Amount and Compound Intrest

 => A = p(1 +  \frac{r}{100} ) ^{t}

 => A = 15000(1 +  \frac{10}{100} )^{2}

 =  > A = 15000  (1 +  \frac{1}{10} ) ^{2}

 =  > A = ( \frac{10 + 1}{10} ) ^{2}

 =  > A = 15000 \times ( \frac{11}){10}  ^{2}

 =  > A = 15000 \times  {(1.1)}^{2}

 =  > A = 15000 \times 1.21

Therefore,   A = 18150

To calculate CI,

CI = A - P

CI = 18150 - 15000

CI = 3150

\huge\pink{\mathfrak{Answer}}

A = 18150

CI = 3150

(ii) Given,

Principal = 156250

Rate = 8%

Time = 1 years

Therefore, finding Amount and Compound Intrest.

 => A = p(1 +  \frac{r}{100} ) ^{t}

 =  > A = 156250(1 +  \frac{ \frac{r}{2} }{100} )^{2t}

 =  > A = (1 +  \frac{8}{2 \times 100} ) ^{2}

 =  > A = 156250 (1 +  \frac{8}{200} ) ^{2}

 =  > A = 156250( \frac{200 +8 }{200}) ^{2}

 =  > A = 1562500 \times  \frac{208}{200}  \times  \frac{208}{200}

 =  > A = 169000

Therefore,   A = 169000

To calculate CI,

CI = A - P

CI = 169000 - 156250

CI = 12750

\huge\green{\mathfrak{Answer}}

A = 169000

CI = 12750

(iii) Given,

Principal = 100000

Rate = 4%

Time = 9 months

Therefore, finding Amount and Compound Intrest.

 => A = p(1 +  \frac{r}{100} ) ^{t}

 =  > A = p(1 +  \frac{ \frac{r}{4} }{100} )^{4t}

 =  > A = 100000(1 +  \frac{4}{4 \times 100} )^{3}

 =  > A = 100000(1 +  \frac{4}{400} ) ^ {3}

 =  > A = 100000 ( 1+ \frac{400}{4} ) ^{3}

 =  > A  = 100000(1 + \frac{1}{100}  )^{3}

 =  > A = 100000(1 +  \frac{1}{100} )  ^{3}

 =  > A = 100000( \frac{100 + 1}{100})^{3}

 =  > A = 100000 \times  \frac{101}{100}  \times  \frac{101}{100}  \times  \frac{101}{100}

 =  > A = 10000 \times 1.01 \times 1.01 \times 1.01 \\  =  > A = 100000 \times 1.030301 \\  =  > A = 103030.1

 =  > A = 103030.1

Therefore,   A = 103030.1

To calculate CI,

CI = A - P

CI = 103030.1 - 100000

CI = 3030.1

\huge\blue{\mathfrak{Answer}}

A = 103030.1

CI = 3030.1

#BeBrainly

Similar questions
Math, 1 year ago