Math, asked by ItxAttitude, 19 days ago

1. Calculate the amount and compound interest on: b. 36,400 for 2 years at 6 % per annum compounded annually. If only

Answers

Answered by EmperorSoul
3

Answer:

Given :

Principle = Rs.36400

Rate = 6% p.a.c.a

Time = 2 years

\begin{gathered}\end{gathered}

To Find :

Amount

Compound Interest

\begin{gathered}\end{gathered}

Using Formulas :

\longrightarrow{\small{\boxed{\sf{A= P\bigg[1 + \dfrac{ {R}}{100} \bigg]^{T}}}}}

\longrightarrow{\small{\boxed{\sf{{C.I=A- P}}}}}

Where :

A = Amount

P = Principle

R = Rate

T = Time

C.I = Compound Interest

\begin{gathered}\end{gathered}

Solution :

Finding the compound interest by substituting the values in the formula :

{\implies{\sf{A= P\bigg[1 + \dfrac{ {R}}{100} \bigg]^{T}}}}

{\implies{\sf{A= 36400\bigg[1 + \dfrac{6}{100} \bigg]^{2}}}}

{\implies{\sf{A= 36400\bigg[\dfrac{(1 \times 100) + (6 \times 1)}{100} \bigg]^{2}}}}

{\implies{\sf{A= 36400\bigg[\dfrac{100 + 6}{100} \bigg]^{2}}}}

{\implies{\sf{A= 36400\bigg[ \: \dfrac{106}{100} \:  \bigg]^{2}}}}

{\implies{\sf{A= 36400\bigg[ \dfrac{106}{100}  \times  \dfrac{106}{100}  \bigg]}}}

{\implies{\sf{A= 36400\bigg[ \dfrac{106 \times 106}{100 \times 100} \bigg]}}}

{\implies{\sf{A= 36400\bigg[ \dfrac{11236}{10000} \bigg]}}}

{\implies{\sf{A= 36400 \times  \dfrac{11236}{10000}}}}

{\implies{\sf{A= 36400 \times   \cancel{\dfrac{11236}{10000}}}}}

{\implies{\sf{A= 36400 \times 1.1236}}}

{\implies{\sf{\red{A= Rs. \: 40899.04}}}}

Hence, the amount is Rs.40899.04.

 \rule{190}1

Now, finding the compound interest by substituting the values in the formula :

{\implies{\sf{{C.I=A- P}}}}

{\implies{\sf{{C.I=40899.04 - 36400}}}}

{\implies{\sf{\red{C.I=Rs.4499.04}}}}

Hence, the compound interest is Rs.4499.04.

\begin{gathered}\end{gathered}

Learn More :

\longrightarrow\small{\underline{\boxed{\sf{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Amount = Principle + Interest}}}}

\longrightarrow\small{\underline{\boxed{\sf{ Principle=Amount - Interest }}}}

\longrightarrow\small{\underline{\boxed{\sf{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Rate = \dfrac{Simple \: Interest \times 100}{Principle \times Time}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Time = \dfrac{Simple \: Interest \times 100}{Principle \times Rate}}}}}

{\rule{220pt}{2.5pt}}

Answered by βαbγGυrl
1

Answer:

Given:

  • P = 12000
  • T = 2 years
  • R = 8% p.a.

To Find :-

  • C.I. = ?

Solution;-

  • Refer the attachment:)

\pink{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}

Attachments:
Similar questions