Math, asked by stgajmara, 7 months ago

1. Calculate the difference between the simple
interest and the compound interest on 4,000
in 2 years at 8% per annum compounded yearly.​

Answers

Answered by manjassp718
2

Answer:

Step-by-step explanation:

Principal (P) = Rs.4000

Rate (R) = 8%

Time (T) = 2years

\rm Simple \: Interest\: (SI) = \dfrac{PTR}{100}SimpleInterest(SI)=

100

PTR

\rm SI= \dfrac{4000 \times 2 \times 8}{100}SI=

100

4000×2×8

\rm SI= 40 × 16SI=40×16

\rm SI= 640SI=640

\rm \therefore Simple\: Interest= Rs.640∴SimpleInterest=Rs.640

Now, Compound Interest (CI) = Amount - Principal

\rm Amount = P \bigg(1 + \dfrac{r}{100}\bigg)^{n}Amount=P(1+

100

r

)

n

\rm \dashrightarrow CI = \bigg[P \bigg(1 + \dfrac{r}{100}\bigg)^{n}\bigg] - P⇢CI=[P(1+

100

r

)

n

]−P

\rm \dashrightarrow CI = \bigg[4000 \bigg(1 + \dfrac{8}{100}\bigg)^{2}\bigg] - 4000⇢CI=[4000(1+

100

8

)

2

]−4000

\rm \dashrightarrow CI = \bigg[4000 \bigg(\dfrac{108}{100}\bigg)^{2}\bigg] - 4000⇢CI=[4000(

100

108

)

2

]−4000

\rm \dashrightarrow CI = \bigg[4000 \times \bigg(\dfrac{27}{25}\bigg)^{2}\bigg] - 4000⇢CI=[4000×(

25

27

)

2

]−4000

\rm \dashrightarrow CI = \bigg[4000 \times \dfrac{27 \times 27}{25 \times 25}\bigg] - 4000⇢CI=[4000×

25×25

27×27

]−4000

\rm \dashrightarrow CI =4665.6 - 4000⇢CI=4665.6−4000

\rm \dashrightarrow CI =665.6⇢CI=665.6

\rm \therefore Compound \: Interest= Rs.665.6∴CompoundInterest=Rs.665.6

The difference between Simple Interest and Compound Interest

= 665.6 - 640

= 25.6

The difference between Simple Interest and Compound Interest is Rs 25.60

waheguru ji Ka khalsa Waheguru ji ki Fateh

hope it helps you

Similar questions