Physics, asked by raindujamandal, 13 days ago

1. Calculate the rate of heat loss through the vertical walls of a boiler furnace of size 4 m by 3 m by 3 m high. The walls are constructed from an inner fire brick wall 25 cm thick of thermal conductivity 0.4 W/mK, a layer of ceramic blanket insulation of thermal conductivity 0.2 W/mK and 8 cm thick, and a steel protective layer of thermal conductivity 55 W/mK and 2 mm thick. The inside temperature of the fire brick layer was measured at 600o C and the temperature of the outside of the insulation 60০ C. Also find the interface temperature of layers.​

Answers

Answered by pomariga112142160034
4

AnswQuestion

1. Calculate the rate of heat loss through the vertical walls of a boiler furnace of size 4 m by 3 m by 3 m high. The walls are constructed from an inner fire brick wall 25 cm thick of thermal conductivity 0.4 W/mK, a layer of ceramic blanket insulation of thermal conductivity 0.2 W/mK and 8 cm thick, and a steel protective layer of thermal conductivity 55 W/mK and 2 mm thick. The inside temperature of the fire brick layer was measured at 600o C and the temperature of the outside of the insulation 60০ C. Also find the interface temperature of layers.​er:

Explanation:

Answered by tiwarivokramadity
6

Answer:

AnswQuestion

1. Calculate the rate of heat loss through the vertical walls of a boiler furnace of size 4 m by 3 m by 3 m high. The walls are constructed from an inner fire brick wall 25 cm thick of thermal conductivity 0.4 W/mK, a layer of ceramic blanket insulation of thermal conductivity 0.2 W/mK and 8 cm thick, and a steel protective layer of thermal conductivity 55 W/mK and 2 mm thick. The inside temperature of the fire brick layer was measured at 600o C and the temperature of the outside of the insulation 60০ C. Also find the interface temperature of layers.​er:

Explanation:

Similar questions