Math, asked by khadeejahena, 3 months ago

1) Check the commutative property (addition and multiplication) when a = -1/2 b=3/10?


2) Check the associative property of multiplication of rational numbers if a = -2/5 B=3/4 and c= 4/5?


3) If a = -3/5 b=5/7 and c= 3/8
prove that a(b + c) = ab + ac ( Distributive property)?


4) Write the multiplicative inverse and additive inverse of a)-2/7
b)-3/-8
c) 4/-5


5) Multiply by the reciprocal of -8/3?


please answer this question with the correct answers... If answers are correct, will make u brainiest.​

Answers

Answered by SachinGupta01
3

Solution : 1

 \sf \: First  \: of \:  all \:  we \:  will \:  check  \: the  \: commutative \:  property \:  of  \: Addition.

 \boxed{ \sf \: Commutative  \: property \:  of  \: addition = \red{ a + b = b + a }}

 \sf \implies  \: \bigg( \dfrac{ - 1}{2}  +  \dfrac{3}{10} \bigg)  =  \bigg( \dfrac{3}{10}  + \dfrac{ - 1}{2}  \bigg)

 \implies \sf  \: \dfrac{ - 5 + 3}{10}   =   \dfrac{3+ ( - 5)}{10}

 \implies \sf  \: \dfrac{ -2}{10}   =   \dfrac{ - 2}{10}

 \implies \sf  \:\dfrac{ -1}{5}   =   \dfrac{ - 1}{5}

\sf \: Now,  \: we  \: will \: check \:  the  \: commutative \:  property \:  of \: Multiplication.

 \boxed{ \sf \: Commutative  \: property \:  of  \: Multiplication = \red{ a  \times  b = b  \times a }}

 \sf \implies\bigg( \dfrac{ - 1}{2}   \times   \dfrac{3}{10} \bigg)  =  \bigg( \dfrac{3}{10}   \times \dfrac{ - 1}{2}  \bigg)

\implies \sf  \:\dfrac{ - 3}{20}    = \dfrac{ - 3}{20}

______________________________________

Solution : 2

  \boxed{\sf \: Associative  \: property  \: of  \: Multiplication = \red{ (a  \times  b) \times c = a \times (b \times c) }}

 \sf  \implies \: \bigg( \dfrac{ - 2}{5} \times\dfrac{ 3}{4}   \bigg) \times \dfrac{4}{5}  \: = \:  \dfrac{ - 2}{5} \times  \bigg(\dfrac{ 3}{4}  \times  \dfrac{4}{5} \bigg)

\sf  \implies \: \sf \dfrac{ - 3}{10}  \times  \dfrac{4}{5}  \:  =  \: \dfrac{ - 2}{5} \times \dfrac{3}{5}

 \sf  \implies \:\sf \dfrac{ - 3}{5}  \times  \dfrac{2}{5}  \:  =  \: \dfrac{ - 2}{5} \times \dfrac{3}{5}

\sf  \implies \: \sf \:  \dfrac{ - 6}{5}  \:  = \dfrac{ - 6}{5}

______________________________________

Solution : 3

 \sf \: Prove \:  that  \:  \underline{a(b + c) = ab + ac} \: (Distributive \:  property)

\sf  \implies \: \sf \:  \dfrac{ - 3}{5} \bigg( \dfrac{5}{7}  +  \dfrac{3}{8}  \bigg) =  \bigg(\dfrac{ - 3}{5} \times \dfrac{5}{7} \bigg)  +  \bigg(\dfrac{ - 3}{5} \times \dfrac{3}{8}  \bigg)

 \sf  \implies \:\sf \:  \dfrac{ - 3}{5} \bigg( \dfrac{5}{7}  +  \dfrac{3}{8}  \bigg) =  \sf \:  \bigg( \dfrac{ - 15}{35}  \bigg) +\bigg( \dfrac{ - 9}{40}  \bigg)

 \sf  \implies \:\sf \:  \dfrac{ - 3}{5}  \times  \bigg(\dfrac{40 + 21}{56}\bigg)  =  \sf \:  \dfrac{ (- 15 \times 8) + ( - 9 \times  - 7)}{280}

 \sf  \implies \:\sf \:  \dfrac{ - 3}{5}  \times  \dfrac{61}{56} = \sf  \:\dfrac{ - 120  - 63}{280}

 \sf  \implies \:\sf \:  \dfrac{ - 183}{280}  = \dfrac{ - 183}{280}

______________________________________

Solution : 4

 \sf \:  \underline{Multiplicative \:  inverse} :

 \sf \: \implies \:  \dfrac{ - 2}{7}  = \dfrac{ - 7}{2}

 \sf \: \implies \:  \dfrac{ - 3}{ - 8}   = \dfrac{ 8}{3}

 \sf \: \implies \:  \dfrac{4}{ - 5}  = \dfrac{ - 5}{ 4}

 \sf \: \underline{ Additive \:  inverse} :

 \sf \: \implies \:  \dfrac{ - 2}{7}  = \dfrac{ 2}{7}

 \sf \: \implies \:  \dfrac{ - 3}{ - 8}   = \dfrac{ - 3}{ 8}

 \sf \:  \implies \: \dfrac{4}{ - 5}  = \dfrac{4}{ 5}

______________________________________

Solution : 5

\sf \: \underline{ Correct  \: question} :

 \sf \: Prove \:  that : \:  \dfrac{ - 8}{3}  \times  \bigg( \dfrac{ - 3}{8}  \bigg) \:  =  \: 1

 \sf \implies \:  \dfrac{ - \!\!\!\not8}{\!\!\!\not3}  \times   \dfrac{ - \!\!\!\not3}{\!\!\!\not8}   \:  =  \: 1

 \sf \implies \:  1   \:  =  \: 1

  \sf \: Hence \:  proved !

Similar questions