Math, asked by subuhiali0, 1 year ago

1. Check whether the following are quadratic equations :
(ii) x2 - 2x =(-2) (3 - x)
(1) (x + 1)2 = 2(x-3)
(iv) (x-3)(2x +1)= x(x+5)
(ii) (x-2)(x+1)=(x - 1)(x + 3)
(vi) x + 3x+1=(x - 2)
(v) (2x - 1)(x-3) = (x + 5)(x - 1)
(viii) x - 4x2 - x + 1 = (x - 2)
(vii) (x + 2) = 2x (x - 1)

Answers

Answered by hukam0685
12

Step-by-step explanation:

Check whether the following are quadratic equations :

 (1){x}^{2}  - 2x =  - 2(3 - x) \\  \\  {x}^{2}  - 2x =  - 6 + 2x \\  \\  {x}^{2}  - 4x + 6 = 0 \\  \\ Yes,\: it \: is \: a \: quadratic \: equation \\

(2) {(x + 1)}^{2}  = 2(x - 3) \\  \\  {x}^{2}  + 2x + 1 = 2x - 6 \\  \\  {x}^{2} + 7 = 0 \\\\ Yes, \: it \: is \: a \: quadratic \: equation \\  \\

(3) (x-3)(2x +1)= x(x+5) \\  \\ 2 {x}^{2}  + x - 6x - 3 =  {x}^{2}  + 5x \\  \\  {x}^{2}  - 10x - 3 = 0 \\  \\ Yes ,\: it \: is \: a \: quadratic \: equation \\

(4) (x-2)(x+1)=(x - 1)(x + 3) \\  \\  {x}^{2}  + x - 2x - 2 =  {x}^{2}  + 3x - x - 3 \\  \\  - x - 2 = 2x - 3 \\  \\  - 3x + 1 = 0 \\  \\ No, \: it \: is \: not \: a \: quadratic \: equation \\  \\

(5) x + 3x+1=(x - 2) \\  \\ x + 3x + 1 = x - 2 \\  \\ 3x + 3 = 0 \\  \\ No, \: it \: is \: not \: a \: quadratic \: equation

(6) (2x - 1)(x-3) = (x + 5)(x - 1) \\  \\ 2 {x}^{2}  - 6x - x + 3 =  {x}^{2}  - x + 5x - 5 \\  \\  {x}^{2}  - 11x + 8 = 0 \\  \\ Yes, \: it \: is \: a \: quadratic \: equation \\  \\

(7)x - 4 {x}^{2}  - x + 1 = (x - 2) \\  \\  - 4 {x}^{2}  + 1 - x + 2 = 0 \\  \\  - 4 {x}^{2}  - x + 3 = 0 \\  \\ Yes, \: it \: is \: a \: quadratic \: equation \\  \\

(8) (x + 2) = 2x (x - 1) \\  \\ x + 2 = 2 {x}^{2}  - 2x \\  \\  - 2 {x}^{2}  + 3x + 2 = 0 \\  \\ Yes, \: it \: is \: a \: quadratic \: equation \\

Hope it helps you.

Answered by sharifrajputroyal01
1

Answer:

Step-by-step explanation:

HLO

Similar questions