Math, asked by sgurjot685, 3 months ago

1. Compute log25(9).log8(27)​

Answers

Answered by pulakmath007
18

SOLUTION

TO DETERMINE

 \sf{ log_{25}(9). log_{8}(27)  }

FORMULA TO BE IMPLEMENTED

We are aware of the formula on logarithm that

 \displaystyle \sf{1. \:  \:  \:  log_{x}(y) =  \frac{ log(y) }{ log(x) }  }

 \displaystyle \sf{2. \:  \:  \:  log_{x}( {y}^{n} )  = n log_{x}(y)  }

EVALUATION

 \displaystyle \sf{ log_{25}(9) . log_{8}(27) }

 \displaystyle \sf{ =   \frac{ log(9) }{ log(25) } \times  \frac{ log(27) }{ log(8) }  }

\displaystyle \sf{ =   \frac{ log( {3}^{2} ) }{ log( {5}^{2} ) } \times  \frac{ log( {3}^{3} ) }{ log( {2}^{3} ) }  }

\displaystyle \sf{ =   \frac{2 log( 3 ) }{ 2log( 5) } \times  \frac{3 log( 3 ) }{3 log( 2 ) }  }

\displaystyle \sf{ =   \frac{ log( 3 ) }{ log( 5) } \times  \frac{ log( 3 ) }{ log( 2 ) }  }

\displaystyle \sf{ =   log_{5}(3). log_{2}(3)  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if 2log x base y=6,then the relation between x and y

https://brainly.in/question/27199002

2. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

Similar questions