1. Convert the following products into sums or differences :
(i) 2 sin 3x cos 2x
(ii) 2 cos 3x sin 2x
(iii) 2 sin 4x sin 2x
(iv) 2 cos 7x cos 3x.
Answers
hope this helps you☺️☺️☺️
Given:
Four equation are provided to us which are
(i) 2 sin 3x cos 2x
(ii) 2 cos 3x sin 2x
(iii) 2 sin 4x sin 2x
(iv) 2 cos 7x cos 3x.
To Find:
Convert the following products into sums or differences.
Step-by-step explanation:
- We will solve following equations by using identities.
- (1) 2 Sin 3x Cos 2x
We know 2Sin A CosB = Sin(A+B)+Sin(A-B)
Using this identity we get
2 Sin 3x Cos 2x = Sin(3x+2x)+Sin(3x-2x)
= Sin5x+Sinx
- (2) 2 cos 3x sin 2x
we know 2Cos A SinB = Sin(A+B)+Sin(A-B)
Using this identity we get
2 Cos 3x Sin 2x = Sin(3x+2x)+Sin(3x-2x)
= Sin5x+Sinx
- (3) 2 sin 4x sin 2x
we know 2sin A SinB = Cos(A+B)+Cos(A-B)
Using this identity we get
2 sin 4x sin 2x = Cos(4x+2x)+Cos(4x-2x)
= Cos6x+Cos2x
- (4) 2 Cos 7x Cos 3x
we know 2cos A cosB = Cos(A+B)+Cos(A-B)
Using this identity we get
2 cos 7x cos 3x = Cos(7x+3x)+Cos(7x-3x)
= Cos10x+Cos4x
Hence,Addition form of following identites are
(1)2Sin3xCos2x= Sin5x +Sinx
(2)2cos3xsin2x= Sin5x +Sinx
(3)2Sin4xSin2x= Cos6x +Cos2x
(3)2cos4xcos2x= Cos10x +Cos4x