Chemistry, asked by pikkigaming1234, 4 days ago

1. Copper is drawn into wires to make electric circuits. This is because it is
(i) Malleable and good conductor of electricity
(ii) Ductile is good conductor of electricity
(iii) Sonorous and good conductor of electricity
(iv) Brittle and good conductor of electricity

Answers

Answered by MAAJJA
0

Let the assumed mean be A = 50 and h = 20Calculation of mean</p><p></p><p>\begin{gathered}\begin{array}{ |c|c|c|c|c|} \hline \rm Class&amp; \rm Frequency&amp;\rm Mid-values&amp;u_i= \dfrac{x_i-A}{h} &amp;f_iu_i \\\\ \hline \\ \: \: \: 0-20&amp;17&amp;10&amp; - 1&amp; - 34\\20 - 40&amp;f _1&amp;30&amp; - 2&amp; - f_ i\\40 - 60&amp;32&amp;50&amp; \: \: \: \: 0&amp; \: \: \: \: \: \: \: 0\\60 - 80&amp;f_ 2&amp;70&amp; \: \: \: \: 1&amp; \: \: \: \: f_2 \\\!\!\!80 - 100 &amp;19&amp;90&amp; \: \: \: \: 2&amp; \: \: \: \: \: 38 \\ \hline &amp;N=\sum \!f_i=68+f_1+f_2&amp;&amp;&amp;\sum\! f_iu_i=4-f_1+f_2\\ \hline\end{array}\end{gathered} </p><p>Class</p><p>0−20</p><p>20−40</p><p>40−60</p><p>60−80</p><p>80−100</p><p></p><p>  </p><p>Frequency</p><p>17</p><p>f </p><p>1</p><p></p><p> </p><p>32</p><p>f </p><p>2</p><p></p><p> </p><p>19</p><p>N=∑f </p><p>i</p><p></p><p> =68+f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> </p><p></p><p>  </p><p>Mid−values</p><p>10</p><p>30</p><p>50</p><p>70</p><p>90</p><p></p><p>  </p><p>u </p><p>i</p><p></p><p> = </p><p>h</p><p>x </p><p>i</p><p></p><p> −A</p><p></p><p> </p><p>−1</p><p>−2</p><p>0</p><p>1</p><p>2</p><p></p><p>  </p><p>f </p><p>i</p><p></p><p> u </p><p>i</p><p></p><p> </p><p>−34</p><p>−f </p><p>i</p><p></p><p> </p><p>0</p><p>f </p><p>2</p><p></p><p> </p><p>38</p><p>∑f </p><p>i</p><p></p><p> u </p><p>i</p><p></p><p> =4−f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> </p><p></p><p> </p><p></p><p> </p><p></p><p> </p><p></p><p>We have,</p><p></p><p>\begin{gathered}N = \sum\!f_i = 120\\\end{gathered} </p><p>N=∑f </p><p>i</p><p></p><p> =120</p><p></p><p> </p><p></p><p>\begin{gathered} \implies68 + f_1 + f_2 = 120 \\ \end{gathered} </p><p>⟹68+f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> =120</p><p></p><p> </p><p></p><p>\begin{gathered} \implies f_1 + f_2 = 120 - 68 \\ \end{gathered} </p><p>⟹f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> =120−68</p><p></p><p> </p><p></p><p>\begin{gathered} \implies f_1 + f_2 = 52 \xrightarrow{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: }(1) \\ \end{gathered} </p><p>⟹f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> =52 </p><p></p><p> (1)</p><p></p><p> </p><p></p><p>Now,</p><p></p><p>\rm{ \: \: \: \: \: \: \: \: \: \: Mean = 50}Mean=50</p><p></p><p>\begin{gathered} \implies \: \: \: \: A + h \bigg \{ \dfrac{1}{N} \sum \!f _ iu_i \bigg \} = 50 \\\\ \end{gathered} </p><p>⟹A+h{ </p><p>N</p><p>1</p><p></p><p> ∑f </p><p>i</p><p></p><p> u </p><p>i</p><p></p><p> }=50</p><p></p><p> </p><p></p><p>\begin{gathered} \implies \: 50 + 20 \bigg \{ \dfrac{4 - f _1 + f _ 2}{120} \bigg \} = 50 \\\\ \end{gathered} </p><p>⟹50+20{ </p><p>120</p><p>4−f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> </p><p></p><p> }=50</p><p></p><p> </p><p></p><p>\begin{gathered} \implies \: 50 + \cancel{ 20} \bigg \{ \dfrac{4 - f _1 + f _ 2}{ \cancel{120}} \bigg \} = 50 \\\\ \end{gathered} </p><p>⟹50+ </p><p>20</p><p> { </p><p>120</p><p> </p><p>4−f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> </p><p></p><p> }=50</p><p></p><p> </p><p></p><p>\begin{gathered} \implies \: \: \: \: \: \: 50 + \bigg \{ \dfrac{4 - f _1 + f _ 2}{ 6 } \bigg \} = 50 \\\\ \end{gathered} </p><p>⟹50+{ </p><p>6</p><p>4−f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> </p><p></p><p> }=50</p><p></p><p> </p><p></p><p>\begin{gathered} \implies \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bigg \{ \dfrac{4 - f _1 + f _ 2}{ 6} \bigg \} = 50 - 50\\\\ \end{gathered} </p><p>⟹{ </p><p>6</p><p>4−f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> </p><p></p><p> }=50−50</p><p></p><p> </p><p></p><p>\begin{gathered} \implies \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \dfrac{4 - f _1 + f _ 2}{ 6 } = 0 \\\\ \end{gathered} </p><p>⟹ </p><p>6</p><p>4−f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> </p><p></p><p> =0</p><p></p><p> </p><p></p><p>\begin{gathered} \implies \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 4 - f _1 + f _ 2 = 0 \\\\ \end{gathered} </p><p>⟹4−f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> =0</p><p></p><p> </p><p></p><p>\begin{gathered}\implies \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: f _1 - f _ 2 = 4 \xrightarrow{ \: \: \: \: \: \: \: \: \: \: }(2)\\\\ \end{gathered} </p><p>⟹f </p><p>1</p><p></p><p> −f </p><p>2</p><p></p><p> =4 </p><p></p><p> (2)</p><p></p><p> </p><p></p><p>Solving 1 and 2</p><p></p><p>\begin{gathered}:\implies \: \: \: \: f _1 - f _ 2 = 4 \xrightarrow{ \: \: \: \: \: \: \: \: \: \: \: \: \: }(1)\\ \end{gathered} </p><p>:⟹f </p><p>1</p><p></p><p> −f </p><p>2</p><p></p><p> =4 </p><p></p><p> (1)</p><p></p><p> </p><p></p><p>\begin{gathered}:\implies \: \: \: \: f_1 + f_2 = 52\xrightarrow{ \: \: \: \: \: \: \: \: \: \: \: \: \: }(2) \\ \\ \end{gathered} </p><p>:⟹f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> =52 </p><p></p><p> (2)</p><p></p><p> </p><p></p><p>\begin{gathered}:\implies \: \: \: \: f _1 = 4 + f _ 2 \\ \end{gathered} </p><p>:⟹f </p><p>1</p><p></p><p> =4+f </p><p>2</p><p></p><p> </p><p></p><p> </p><p></p><p>\begin{gathered}:\implies \: \: \: \: f_1 + f_2 = 52 \\ \end{gathered} </p><p>:⟹f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> =52</p><p></p><p> </p><p></p><p>\begin{gathered}:\implies \: \: \: \: 4 + f_2 + f_2 = 52 \\ \end{gathered} </p><p>:⟹4+f </p><p>2</p><p></p><p> +f </p><p>2</p><p></p><p> =52</p><p></p><p> </p><p></p><p>\begin{gathered}:\implies \: \: \: \: 2f_2 = 48 \\ \end{gathered} </p><p>:⟹2f </p><p>2</p><p></p><p> =48</p><p></p><p> </p><p></p><p>\begin{gathered}:\implies \: \: \: \: f_2 = \ \dfrac{48 }{2}\\ \end{gathered} </p><p>:⟹f </p><p>2</p><p></p><p> =  </p><p>2</p><p>48</p><p></p><p> </p><p></p><p> </p><p></p><p>\begin{gathered}:\implies \: \: \: \: f_2 = \cancel\dfrac{48 }{2}\\ \end{gathered} </p><p>:⟹f </p><p>2</p><p></p><p> = </p><p>2</p><p>48</p><p></p><p> </p><p></p><p> </p><p></p><p> </p><p></p><p>\begin{gathered}:\implies \: \: \: \: f_2 = 24\\ \\ \end{gathered} </p><p>:⟹f </p><p>2</p><p></p><p> =24</p><p></p><p> </p><p></p><p>\begin{gathered}:\implies \: \: \: \: f_1 + f_2 = 52 \\ \end{gathered} </p><p>:⟹f </p><p>1</p><p></p><p> +f </p><p>2</p><p></p><p> =52</p><p></p><p> </p><p></p><p>\begin{gathered}:\implies \: \: \: \: f_1 + 24 = 52 \\ \end{gathered} </p><p>:⟹f </p><p>1</p><p></p><p> +24=52</p><p></p><p> </p><p></p><p>\begin{gathered}:\implies \: \: \: \: f_1 = 28\\ \\ \end{gathered} </p><p>:⟹f </p><p>1</p><p></p><p> =28</p><p></p><p> </p><p></p><p>\therefore f_1 = 28 \: \mathrm{and} \: f_2 = 24∴f </p><p>1</p><p></p><p> =28andf </p><p>2</p><p></p><p> =24

Answered by kallunniexpress
0
The property of metal to be drawn to wires are called ductility and the best conductors of electricity are - silver,gold,copper etc
Since copper is more cheaper it is used as electric wires - therefore ans - option (ii)
Similar questions