1 - cos 0
(1) (cosec 0 - cot 0)2 = 1 +cos e
Answers
Answer:To Prove
→ (cosec∅ - cot∅)² = (1 - cos∅)/(1 + cos∅)
Solution
By replacing values of cosec∅ and cot∅.
L.H.S → (1/sin∅ - cos∅/sin∅)²
→ [(1 - cos∅)/sin∅]²
→ (1 - cos∅)²/sin²∅
Since sin²∅ = 1 - cos²∅
→ (1 - cos∅)²/(1 - cos²∅)
By a² - b² identity we get (1 - cos∅)(1 + cos∅)
→ (1 - cos∅)(1 - cos∅)/(1 - cos∅)(1 + cos∅)
→ (1 - cos∅)/(1 + cos∅) = R.H.S
hope it helps u
plz mark as brainliast answer
Explanation:
Answer:To Prove
→ (cosec∅ - cot∅)² = (1 - cos∅)/(1 + cos∅)
Solution
By replacing values of cosec∅ and cot∅.
L.H.S → (1/sin∅ - cos∅/sin∅)²
→ [(1 - cos∅)/sin∅]²
→ (1 - cos∅)²/sin²∅
Since sin²∅ = 1 - cos²∅
→ (1 - cos∅)²/(1 - cos²∅)
By a² - b² identity we get (1 - cos∅)(1 + cos∅)
→ (1 - cos∅)(1 - cos∅)/(1 - cos∅)(1 + cos∅)
→ (1 - cos∅)/(1 + cos∅) = R.H.S