Math, asked by ravikalathiya7622, 11 months ago

1 - cos 0
( (cosec 0 - cot 0)2 =
1 + cos 0​

Answers

Answered by 18shreya2004mehta
2

Step-by-step explanation:

Your question is hundred percent wrong

Attachments:
Answered by SujalSirimilla
9

\LARGE{\bf{\underline{\underline{GIVEN:-}}}}

CORRECT QUESTION:

\bullet \ \ \sf (cosec \theta-cot \theta)^2=\dfrac{1-cos \theta}{1+cos \theta}

\LARGE{\bf{\underline{\underline{SOLUTION:-}}}}

LHS:

\to  \sf (cosec \theta-cot \theta)^2

\to  \sf \left (\dfrac{1}{sin \theta} -\dfrac{cos \theta}{sin \theta} \right)^2

\to  \sf \left (\dfrac{1-cos\theta}{sin \theta}  \right)^2

\to  \sf   \left(\dfrac{(1-cos\theta)^2}{ \bold{sin^2 \theta}} \right)

Simplify the boldened part by substituting sin²θ = 1 - cos²θ.

\to  \sf \left(\dfrac{(1-cos\theta)^2}{\bold{1-cos^2 \theta}}  \right)

Simplify the boldened part by using (a - b)² = a² - b².

\to  \sf  \left(\dfrac{(1-cos\theta)(1-cos\theta)}{(1-cos \theta)(1+cos \theta)}  \right)

\to  \sf{\red{  \left(\dfrac{(1-cos\theta)}{(1+cos \theta)}  \right)}} \bigstar

LHS=RHS.

HENCE PROVED.

FUNDAMENTAL TRIGONOMETRIC IDENTITIES:

\boxed{\substack{\displaystyle \sf sin^2 \theta+cos^2 \theta = 1 \\\\  \displaystyle \sf 1+cot^2 \theta=cosec^2 \theta \\\\ \displaystyle \sf 1+tan^2 \theta=sec^2 \theta}}

TRIGONOMETRIC TABLE:

\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}

You can find cot, cosec and sec by reciprocating tan, sin and cos.

Similar questions