Math, asked by rajasekhar007, 16 days ago

(1-cosθ)(1+cosθ)(1+cot^2θ) =​

Answers

Answered by ramkrishnanj10
0

Step-by-step explanation:

please consider theta as @

(1-cos@)(1+cos@)(1+cot^2@)=(1-cos^2@)(cosec@) [ [1+cot^2@=cosec@]

=>sin@×cosec@=1

Answered by rakeshdubey33
0

Step-by-step explanation:

Given :

(1 -   \cos \alpha  )(1 +  \cos\alpha ) (1 +  { \cot }^{2}  \alpha )

=

(1 -  { \cos }^{2}  \alpha )(1 +  { \cot }^{ 2 }  \alpha )

=

 { \sin }^{2}  \alpha   \:  \times  \:  {cosec}^{2}  \alpha

= 1

Note :--

1 -  { \cos }^{2}  \alpha  \:  =   { \sin }^{2}   \alpha

1 +  { \cot }^{2}  \alpha  \:  =  {cosec}^{2}  \alpha

 {cosec}^{2}  \alpha  \:  =  \frac{1}{ { \sin }^{2}  \alpha }

Similar questions