Math, asked by vinayakjoshi861, 10 months ago

1+cos Ф/1- cos totally =(cosec+cot tita){2}

Attachments:

Answers

Answered by Anonymous
6

❏ Question:-

Prove That,

\sf\longrightarrow\bf [\frac{1+\cos\theta}{1-\cos\theta}]=(\cosec\theta+\cot\theta)^2

Solution:-

\bf L.H.S.\sf\bf= [\frac{1+\cos\theta}{1-\cos\theta}]

\sf\bf = [\frac{(1+\cos\theta)\times(1+\cos\theta)}{(1-\cos\theta)(1+\cos\theta)}]

\sf\bf = [\frac{(1+\cos\theta)^2}{1^2-\cos^2\theta}]

\sf\bf = [\frac{(1+\cos\theta)^2}{\sin^2\theta}]

\sf\bf = [\frac{(1+\cos\theta)}{\sin\theta}]^2

\sf\bf = [\frac{1}{\sin\theta}+\frac{cos\theta}{\sin\theta}]^2

\sf\bf = [\cosec\theta+\cot\theta]^2=R.H.S.\:\:(proved)

━━━━━━━━━━━━━━━━━━━━━━━

✰❏ Formula Used:-

━━━━━━━━━━━━━━━━━━━━━━━

\sf\bf\longrightarrow \sin^2\theta=1-\cos^2\theta

\sf\bf\longrightarrow \cosec^2\theta=1+\cot^2\theta

\sf\bf\longrightarrow \sec^2\theta=1+\tan^2\theta

\sf\bf\longrightarrow \cosec\theta=\frac{1}{\sin\theta}

\sf\bf\longrightarrow \sec\theta=\frac{1}{\cos\theta}

\sf\bf\longrightarrow \cot\theta=\frac{1}{\tan\theta}

\sf\bf\longrightarrow (a+b)(a-b)=a^2-b^2

━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

please mark it if it is useful.

Similar questions