Math, asked by evelin2925, 2 days ago

(1+cos π÷10)(1+cos 3π÷10)(1+cos 7π÷10)(1+cos 9π÷10)=1÷16

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:\bigg[1 + cos\dfrac{\pi}{10} \bigg]\bigg[1 + cos\dfrac{3\pi}{10} \bigg]\bigg[1 +  cos\dfrac{7\pi}{10} \bigg]\bigg[1 + cos\dfrac{9\pi}{10} \bigg]

Now,

We know that,

\boxed{ \tt{ \: cos[\pi - x] =  -  \: cosx}}

So, Consider,

\rm :\longmapsto\:cos\bigg[\dfrac{7\pi}{10} \bigg] = cos\bigg[\pi - \dfrac{3\pi}{10} \bigg] =  -  \: cos\bigg[\dfrac{3\pi}{10} \bigg]

and

\rm :\longmapsto\:cos\bigg[\dfrac{9\pi}{10} \bigg] = cos\bigg[\pi - \dfrac{\pi}{10} \bigg] =  -  \: cos\bigg[\dfrac{\pi}{10} \bigg]

So, on substituting these values in given expression, we get

\rm \:  =  \:\bigg[1 + cos\dfrac{\pi}{10} \bigg]\bigg[1 + cos\dfrac{3\pi}{10} \bigg]\bigg[1 - cos\dfrac{3\pi}{10} \bigg]\bigg[1 - cos\dfrac{\pi}{10} \bigg]

can be re-arranged as

\rm \:  =  \:\bigg[1 + cos\dfrac{\pi}{10} \bigg]\bigg[1 - cos\dfrac{\pi}{10} \bigg]\bigg[1 + cos\dfrac{3\pi}{10} \bigg]\bigg[1 - cos\dfrac{3\pi}{10} \bigg]

\rm \:  =  \:\bigg[1 -  {cos}^{2} \dfrac{\pi}{10} \bigg]\bigg[1 -  {cos}^{2} \dfrac{3\pi}{10} \bigg]

We know,

 \purple{\rm :\longmapsto\:\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x = 1 \: }}}

So, using this, we get

\rm \:  =  \: {sin}^{2}\bigg[\dfrac{\pi}{10} \bigg] \times  {sin}^{2} \bigg[\dfrac{3\pi}{10} \bigg]

\rm \:  =  \: {sin}^{2}18 \degree \times  {sin}^{2}54 \degree

\rm \:  =  \: {[sin18 \degree \times sin54\degree]}^{2}

We know,

\boxed{ \tt{ \: sin18\degree =  \frac{ \sqrt{5}  - 1}{4} }}

and

\boxed{ \tt{ \: sin54\degree =  \frac{ \sqrt{5}  +  1}{4} }}

So, using these values, we get

\rm \:  =  \: {\bigg[\dfrac{ \sqrt{5}  -1 }{4}  \times \dfrac{ \sqrt{5} + 1 }{4} \bigg]}^{2}

\rm \:  =  \: {\bigg[\dfrac{ {( \sqrt{5} )}^{2} -  {1}^{2}  }{16} \bigg]}^{2}

\rm \:  =  \: {\bigg[\dfrac{ 5 - 1}{16} \bigg]}^{2}

\rm \:  =  \: {\bigg[\dfrac{4}{16} \bigg]}^{2}

\rm \:  =  \: {\bigg[\dfrac{1}{4} \bigg]}^{2}

\rm \:  =  \:\dfrac{1}{16}

Hence,

 \red{\boxed{ \sf{ \: \bigg[1 + cos\dfrac{\pi}{10} \bigg]\bigg[1 + cos\dfrac{3\pi}{10} \bigg]\bigg[1 +  cos\dfrac{7\pi}{10} \bigg]\bigg[1 + cos\dfrac{9\pi}{10} \bigg] = \dfrac{1}{16} }}}

Additional Information :-

\boxed{ \tt{ \: sin18\degree = cos72\degree =  \frac{ \sqrt{5} - 1 }{4}}}

\boxed{ \tt{ \: sin54\degree = cos36\degree =  \frac{ \sqrt{5} - 1 }{4}}}

\boxed{ \tt{ \: cos18\degree = sin72\degree =  \sqrt{\dfrac{10 + 2 \sqrt{5} }{4} }}}

\boxed{ \tt{ \: cos54\degree = sin36\degree =  \sqrt{\dfrac{10  -  2 \sqrt{5} }{4} }}}

Similar questions