Math, asked by nirjharathapa, 3 months ago

1+ cos 105° + cos 165°/sin 105° + sin 375°
= 0​

Answers

Answered by suraj5070
211

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \sf \bf 1+\dfrac{cos\:{105}^{\circ} +cos\:{165}^{\circ}}{sin\:{105}^{\circ} +sin\:{375}^{\circ}} =0

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf\implies 1+\dfrac{cos\:{105}^{\circ} +cos\:{165}^{\circ}}{sin\:{105}^{\circ} +sin\:{375}^{\circ}} =0

 \sf \bf RHS

 \sf \bf\implies 1+\dfrac{cos\:{105}^{\circ} +cos\:{165}^{\circ}}{sin\:{105}^{\circ} +sin\:{375}^{\circ}}

------------------------------------------------------------

 \sf \bf cos\:{105}^{\circ} \:can\:be\:written \:as\::-

 \sf \bf \implies cos\:\big({90}^{\circ} +{15}^{\circ} \big)

\implies {\boxed {\color {green} {\sf \bf - sin\:{15}^{\circ}}}}

 \\

 \sf \bf cos\:{165}^{\circ} \:can\:be\:written \:as\::-

 \sf \bf \implies cos\:\big({180}^{\circ} +{15}^{\circ} \big)

\implies {\boxed {\color {green} {\sf \bf - cos\:{15}^{\circ}}}}

 \\

 \sf \bf sin\:{105}^{\circ} \:can\:be\:written \:as\::-

 \sf \bf \implies sin\:\big({90}^{\circ} +{15}^{\circ} \big)

\implies {\boxed {\color {green} {\sf \bf  cos\:{15}^{\circ}}}}

 \\

 \sf \bf sin\:{375}^{\circ} \:can\:be\:written \:as\::-

 \sf \bf \implies sin\:\big({360}^{\circ} +{15}^{\circ} \big)

\implies {\boxed {\color {green} {\sf \bf sin\:{15}^{\circ}}}}

------------------------------------------------------------

 {\underbrace {\overbrace {\color {orange} {\sf \bf Substitute \:the\:values}}}}

 \sf \bf\implies 1+\dfrac{-sin\:{15}^{\circ} - cos\:{15}^{\circ}}{cos\:{15}^{\circ} +sin\:{15}^{\circ}}

 \sf \bf\implies 1+\dfrac{-\big[sin\:{15}^{\circ} + cos\:{15}^{\circ}\big]}{cos\:{15}^{\circ} +sin\:{15}^{\circ}}

 \sf \bf\implies 1+\dfrac{-\cancel {\big[sin\:{15}^{\circ} + cos\:{15}^{\circ}\big]}}{\cancel {cos\:{15}^{\circ} +sin\:{15}^{\circ}}}

 \sf \bf\implies 1+\dfrac{-1}{1}

 \sf \bf\implies 1+\big(-1\big)

 \sf \bf\implies 1-1

\implies{\boxed {\boxed {\color {blue} {\sf \bf 0}}}}

 \sf \bf LHS

 {\color {purple} \underline {\tt \therefore LHS=RHS}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

{\color {red} {\tt Identities}}

 \sf \bf {sin}^{2}\:\theta+{cos}^{2}\:\theta =1

 \sf \bf {tan}^{2}\:\theta+1={sec}^{2}\:\theta

 \sf \bf {cot}^{2}\:\theta+1={cosec}^{2}\:\theta

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}


ITZYUVIHERE: extraordinary answer ☺️☺️☺️❤️....but y u blocked me dear ?? (╯︵╰,)
Similar questions