(1-cos^2 theta)sec^2 theta=tan^2 theta
Answers
Answered by
3
Step-by-step explanation:
LHS
We know the identity that
- Sin theta = 1 - cos² theta
So we can put Sin theta in the bracket as:-
sin² theta × sec² theta
Now we also know that
- Sec theta = 1/ cos theta
So putting cos ² theta in place of sec ² theta
Sin² theta × 1/ cos² theta
Now we know that
- tan theta = sin theta / cos theta
So we got tan² theta in LHS.
RHS
Already Tan² theta given
So,
LHS = RHS
Hence Proved.
Some Identities
- Sin²0 = 1 - cos²0
- 1 + tan²0= sec²0
- 1 + cot²0= cosec²0
- Sin0= cos0/cot0
- Tan0 = sin0/cos0
- Cos0= cot0/cosec0
- cosec0= sec0/tan0
- sec0= tan0/sin0
- cot0= cosec0/sec0
- Where 0 is theta
Answered by
2
Answer:
⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇
⏩ ⒶⓃⓈⓌⒺⓇ ⏪
GIVEN : (1-cos^2 theta)sec^2 theta=tan^2 theta
➡ (1- cos^2 theta) sec ^2 theta
- 1 - cos ^2 theta = sin ^2 theta
Substitute it, we get....
➡ (sin ^2 theta) (sec^2 theta)
- sec^2 theta = 1 / cos ^2 theta
Substitute it, we get.....
➡ (sin ^2 theta) ( 1 / cos ^2 theta)
➡ sin ^2 theta/ cos ^2 theta
- sin ^2 theta/ cos ^2 theta = tan^2 theta
➡ tan ^2 theta
THEREFORE IT IS PROVED...
⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆
Step-by-step explanation:
℘ℓḙᾰṧḙ ՊᾰԻк Պḙ ᾰṧ ♭Իᾰ!ℵℓ!ḙṧт ✌✌✌
Similar questions