Math, asked by SHILPAapu, 10 months ago

(1-cos^2 theta)sec^2 theta=tan^2 theta​

Answers

Answered by TheMoonlìghtPhoenix
3

Step-by-step explanation:

LHS

We know the identity that

  • Sin theta = 1 - cos² theta

So we can put Sin theta in the bracket as:-

sin² theta × sec² theta

Now we also know that

  • Sec theta = 1/ cos theta

So putting cos ² theta in place of sec ² theta

Sin² theta × 1/ cos² theta

Now we know that

  • tan theta = sin theta / cos theta

So we got tan² theta in LHS.

RHS

Already Tan² theta given

So,

LHS = RHS

Hence Proved.

Some Identities

  • Sin²0 = 1 - cos²0
  • 1 + tan²0= sec²0
  • 1 + cot²0= cosec²0
  • Sin0= cos0/cot0
  • Tan0 = sin0/cos0
  • Cos0= cot0/cosec0
  • cosec0= sec0/tan0
  • sec0= tan0/sin0
  • cot0= cosec0/sec0
  • Where 0 is theta
Answered by Anonymous
2

Answer:

ⒶⓃⓈⓌⒺⓇ

GIVEN : (1-cos^2 theta)sec^2 theta=tan^2 theta

(1- cos^2 theta) sec ^2 theta

  • 1 - cos ^2 theta = sin ^2 theta

Substitute it, we get....

(sin ^2 theta) (sec^2 theta)

  • sec^2 theta = 1 / cos ^2 theta

Substitute it, we get.....

(sin ^2 theta) ( 1 / cos ^2 theta)

sin ^2 theta/ cos ^2 theta

  • sin ^2 theta/ cos ^2 theta = tan^2 theta

tan ^2 theta

THEREFORE IT IS PROVED...

Step-by-step explanation:

℘ℓḙᾰṧḙ ՊᾰԻк Պḙ ᾰṧ ♭Իᾰ!ℵℓ!ḙṧт

Similar questions