Math, asked by abhinabbehera18, 10 months ago

1-cos^3x
lim
x->0 x sin 2x​

Answers

Answered by FIREBIRD
28

Answer:

 \dfrac{3}{4} \:  is \: the \: answer

Step-by-step explanation:

We Have :-

lim_{x -  > 0} \:  \dfrac{1 - cos^{3}x}{xsin2x}

Solution :-

lim_{x -  > 0} \:  \dfrac{1 - cos^{3}x}{x \: sin2x}  \\  \\  \\ applying \: l \: hopital \: rule \\  \\  \\ lim_{x -  > 0} \:  \dfrac{3 \: cos^{2}x \: sinx }{2x \: cos2x  +  sin2x }  \\  \\  \\ lim_{x -  > 0} \:  \dfrac{3 \: cos^{2}x \: sinx }{2x \: (cos^{2}x \:  -  sin^{2} x) + 2 \: sinx \: cosx }  \\  \\  \\  \dfrac{3}{2} lim_{x -  > 0} \:  \dfrac{\: cos^{2}x \: sinx }{x \: (cos^{2}x \:  -  sin^{2} x) +  \: sinx \: cosx } \\  \\  \\ dividing \: by \: cos^{2} x \\  \\  \\ \dfrac{3}{2} lim_{x -  > 0} \:  \dfrac{ sinx }{x \: (1 - tan^{2} x) +  tanx } \\  \\  \\ again \: applying \: l \: hopital \\  \\  \\ \dfrac{3}{2} lim_{x -  > 0} \:  \dfrac{ cosx }{x \: ( - 2tanx \: sec^{2} x) + (1 -  tan^{2}x)  \times 1 + sec^{2} x} \\  \\  \\ putting \: the \: limit \:  \\  \\  \\  \dfrac{3}{2}  \times  \dfrac{1}{1 + 1}  \\  \\  \\ \dfrac{3}{2}  \times  \dfrac{1}{2} \\  \\  \\  \dfrac{3}{4}

Answered by Anonymous
15

\huge{\text{\underline{Solution:-}}}

\impliesLim( x→0) ( 1- cos³x) / xsin2x

Now,

\implies(1 - cos³x) = (1 - cosx) (1 + cos²x + cosx)

\implies(2sin²x / 2) (1 + cos²x + cosx)

Using concept:-

\impliesLim( x → 0) sinx / x = 1

Now,

\impliesLim ( x →0) (2sin²x / 2 / x²/ 4 × x²/ 4 ) ( 1 + cos²x + cosx) / x (sin2x / 2x) × 2x

\implies ( 2 × 1 / 4) ( 1 + 1 + 1) / ( 2)

\implies\tt{\boxed{\frac{3}{4}}}

___________________________________________________

Similar questions