1-cos^4a/sin^4a=2cosec^2a-1
Answers
Answered by
3
Solution:
LHS = (1-cos⁴A)/sin⁴A
= [1² - (cos²A)²]/sin⁴A
= [(1+cos²A)(1-cos²A)]/sin⁴A
/* a²-b² = (a+b)(a-b) */
= [(1+cos²A)sin²A]/(sin²A)²
/* 1-cos²A = sin²A */
= (1+cos²A)/sin²A
= ( 1+1-sin²A)/sin²A
/* cos²A = 1-sin²A */
= (2-sin²A)/sin²A
= 2/sin²A - sin²A/sin²A
= 2cosec²A - 1
/* 1/sin²A = cosec²A */
= RHS
••••
Similar questions