Math, asked by maazshamsher0101, 7 months ago

√1-cos A / √1+cos A = cosec A - cotA​

Attachments:

Answers

Answered by gangatandekar54
1

√1-cosA/√1+cosA

√1-cosA/√1+cosA×√1-cosA/√1-cosA

√(1-cosA)²/√1-cos²A

1-cosA/√sin²A

1-cosA/sinA

1/sinA-cosA/sinA

cosecA - cotA

LHS= RHS

Attachments:
Answered by InfiniteSoul
4

\sf{\underline{\underline{\huge{\bold{Solution}}}}}

 {\bold{\sqrt{\dfrac{1 - cos A}{1 + cos A}} = cosec A - cot  A}}

⠀⠀⠀⠀

\sf{\underline{\underline{\large{\bold{LHS}}}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{\sqrt{\dfrac{1 - cos A}{1 + cos A}}}}

⠀⠀

  • Rationalizing the denominator

⠀⠀

\sf : \implies\:{\bold{\sqrt{\dfrac{1 - cos A\times 1 - cos A}{1 + cos A\times 1 - cos A}}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{\sqrt{\dfrac{(1 - cos A)^2}{1 + cos A\times 1 - cos A}}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{( a - b )( a + b )= a^2- b^2}}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{\sqrt{\dfrac{(1 - cos A)^2}{1^2 -  cos ^2A}}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{\sqrt{\dfrac{(1 - cos A)^2}{1 - cos ^2A}}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{1 - cos^2 a = sin^2 a}}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{\sqrt{\dfrac{(1 - cos A)^2}{sin^2 a}}}}

⠀⠀⠀⠀

\sf : \implies\: \bigg( {\bold {\sqrt{\dfrac{1 - cos A}{sin A}}}}\bigg ) ^2

⠀⠀⠀⠀

\sf : \implies\:{\bold{{\dfrac{1 - cos A}{sin A}}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{\dfrac{1 }{sinA}- \dfrac{cos A}{sinA}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{\dfrac{1}{sinA} = cosec}}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{\dfrac{cosA}{sinA} = cot A}}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ cosecA - cotA}}

⠀⠀⠀⠀

\sf{\underline{\underline{\large{\bold{RHS}}}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ cosecA - cotA}}

⠀⠀⠀⠀

\sf{\underline{\underline{\large{\bold{Compare}}}}}

⠀⠀⠀⠀

\sf {\bold{ cosecA - cotA}} = \sf {\bold{ cosecA - cotA}}

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀.....Hence proved

Similar questions