(1+cos a)(1+cos b)(1+cos c)=(1-cos a)(1-cos b)(1-cos)=k find the value of k
Answers
Answered by
0
Solution:
We have ,
(1+cos A)(1+cos B)(1+cos C)=(1-cos A)(1-cos B)(1-cos C)
Multiply both sides of the equation by (1-cosA)((1-cosB)(1-cosC) , we get
=> [(1+cosA)(1-cosA)(1+cosB)(1-cosB).
(1+cosC)(1-cosC)]=[(1-cosA)²(1-.
cosB)²(1-cosC)²]
=> [(1-cos²A)(1-cos²B)(1-cos²C)]=[(1-cosA).
(1-cosB)(1-cosC)]²
=> sin²Asin²Bsin²C=[(1-cosA)(1-cosB)(1-.
cosC)]²
=>[ sinAsinBsinC]²=[(1-cosA)(1-cosB)(1-.
cosC)]²
=> sinAsinBsinC=(1-cosA)(1-cosB)(1-cosC)
Hence , proved .
•••••
Similar questions