1+cos A/1–cosA
a = (cosec A+ cotA) ²
Answers
Answered by
4
Answer:
Step-by-step explanation:
RHS = (cosecA-cotA)²
= [(1/sinA)-(cosA/sinA)]²
/*
i ) cosecA = 1/sinA
ii ) cotA = cosA/sinA */
= [ (1-cosA)/sinA ]²
= (1-cosA)²/sin²A
= (1-cosA)²/(1-cos²A)
/*
sin²A = 1- cos²A */
= (1-cosA)²/[(1+cosA)(1-cosA)]
/* we know the algebraic identity,
a²-b² = (a+b)(a-b) */
After cancellation, we get
= (1-cosA)/(1+cosA)
= RHS
Therefore,
(cosec A-cot A)²=(1-cos A)/ (1+ cos A)
Similar questions