Math, asked by ButterFliee, 1 year ago

1+ cos A + sin A/ 1+ cos A - sin A= 1+ sin A/ cosA​

Answers

Answered by King412
75

 \star \:  \:  \sf \fbox{to \: prove - }

 \sf  \implies \:  \frac{1 + cos A + sin A }{1 + cos A  -  sin A}  \times  \frac{1 + sin A }{cosA }  \\

 \star \:  \:  \sf \fbox{ proof - }

 \sf\implies \: \frac{ {(1 + cos A + sin A)  }^{2} }{(1 + cos A )^{2} -  {sin}^{2}  A }   \\

 \sf\implies \: \frac{ (1 + cos A)^{2} + 2(1 + cos A)(sin)( {sin}^{2}  A)}{1 +  {cos}^{2}A + 2 \: cos A -  {sin}^{2} A } \\

 \sf \implies \:  \frac{1 +  {cos}^{2}A + 2 \: cos A +  {sin}^{2}A + 2(sin)(1 +cos A) }{ {cos}^{2}A +   {cos}^{2}A + 2cos A  }  \\

 \sf \implies \:  \frac{1 + 1 + 2 \: cos A + 2 \: sin(1 + cos A)  }{2 \:  {cos}^{2}  A + 2  \: cos A }  \\

 \sf \implies \:  \frac{2 + 2 \: cos A + 2 \: sin(1 + cos A) }{2 {cos}^{2}  A + 2 \: cos A }  \\

 \sf \implies \:  \frac{ \cancel{2}(1 + cos A + sin A(1 + cosA))} { \cancel{2}( {cos}^{2} A + cos A) }  \\

 \sf \implies \:  \frac{1 + cos A  + sin A  \times cos A }{cos A(cos A + 1)  }  \\

 \sf \implies \:  \frac{1(1 + cos A) + sin(1 + cos A)  }{cos A(1 + cos A) }  \\

 \sf \implies \:  \frac{(1 + sinA) \cancel{(1 + cos A)} }{cos A \cancel {(1 + cos A) }}  \\

 \sf \implies \:  \frac{(1 + sin A) }{cos A}  \\

 \large \sf \fbox{hence \: it \: is \: proved \: }

Answered by Vσlρıηα
18

Hi ,

LHS = cosA /(1-sinA ) + sinA / ( 1-cosA ) + 1

= [ CosA (1-cosA)+sinA(1-sinA)+(1-sinA)(1-cosA) ]/

(1 -sinA ) ( 1- cosA )

= [ cosA -cos² A + sinA - sin² A +1 -cosA-sinA +sinAcosA ] / ( 1 - sinA ) ( 1 - cosA )

= [ - ( cos²A + sin² A ) + 1 + sinAcosA ] /(1-sinA)(1-cosA)

= [ -1 + 1 + sinAcosA ] / ( 1- sinA ) ( 1- cosA )

= sinAcosA / ( 1 - sinA ) ( 1 - cosA )

= RHS

I hope this helps you.

Similar questions