1+cosθ+sinθ/1+cosθ-sinθ = 1+sinθ/cosθ
Answers
Answered by
0
Step-by-step explanation:
LHS
1+cosA+sinA/1+cosA-sinA×1+cosA+sinA/1+cosA+sinA
={(1+cosA)+sinA}²/(1-cosA)²-sin²A
=(1+cosA)²+sin²A+2(1+cosA)sinA/1+2cosA+cos²A-sin²A
=1+cos²A+2cosA+sin²A+2sinA+2sinA.cosA/1+2cosA+cos²A-1+cos²A
=2+2cosA+2sinA+2sinAcosA/2cosA+2cos²A
=2(1+cosA+sinA+sinAcosA)/2(cosA+cos²A)
=(1+cosA)+sinA(1+cosA/cosA(1+cosA)
=(1+cosA)(1+sinA)/cosA(1+cosA
=1+sinA/cosA
RHS
Attachments:
Answered by
0
Answer:
✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶
=
✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶
_________________________________⠀⠀⠀⠀
⠀⠀⠀
_________________________________⠀
Similar questions