Math, asked by svsriramam3733, 1 year ago

1+cosθ+sinθ/1+cosθ-sinθ = 1+sinθ/cosθ

Answers

Answered by sandy1816
0

Step-by-step explanation:

LHS

1+cosA+sinA/1+cosA-sinA×1+cosA+sinA/1+cosA+sinA

={(1+cosA)+sinA}²/(1-cosA)²-sin²A

=(1+cosA)²+sin²A+2(1+cosA)sinA/1+2cosA+cos²A-sin²A

=1+cos²A+2cosA+sin²A+2sinA+2sinA.cosA/1+2cosA+cos²A-1+cos²A

=2+2cosA+2sinA+2sinAcosA/2cosA+2cos²A

=2(1+cosA+sinA+sinAcosA)/2(cosA+cos²A)

=(1+cosA)+sinA(1+cosA/cosA(1+cosA)

=(1+cosA)(1+sinA)/cosA(1+cosA

=1+sinA/cosA

RHS

Attachments:
Answered by ItzEnchantedBoy
0

Answer:

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

\large\green{\mid{\fbox{\tt{Ꭲօ թɾօѵҽ}}\mid}}

\frac{sinθ}{1+cosθ}+\frac{1+cosθ}{sinθ}=2cosecθ

\large\red{\mid{\fbox{\tt{รοℓυƭเօɳ}}\mid}}

\large\pink{\mid{\fbox{\tt{ᏞᎻร}}\mid}}=

⟹\sf\bold{\blue{\frac{sinθ}{1+cosθ}+\frac{1+cosθ}{sinθ}}}

⟹\sf\bold{\blue{\frac{sin²+(1+cosθ)²}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{sin²+1+cos²θ+2cosθ}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{sin²+cos²θ+1+2cosθ}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{2+2cosθ}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{2(1+cosθ)}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{2}{sinθ}}}

⟹\large\pink{\mid{\fbox{\tt{2.coseθ}}\mid}}

\large\pink{\mid{\fbox{\tt{ᏞᎻร=ƦᎻร}}\mid}}

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

_________________________________⠀⠀⠀⠀

⠀⠀⠀ \large\green{\mid{\fbox{\tt{❥ϐℓυєᴇყεร}}\mid}}

_________________________________⠀

Similar questions