Math, asked by SarvatarshanSankar, 9 months ago

√1+cos theta/√1-cos theta = ​

Answers

Answered by DrNykterstein
5

 \sf \Rightarrow \quad  \dfrac{ \sqrt{1 + cos \:  \theta} }{ \sqrt{1 - cos \:  \theta} }  \\  \\ \sf \Rightarrow \quad   \sqrt{ \frac{1 + cos \:  \theta}{1 - cos \:  \theta} }  \times  \sqrt{ \frac{1 + cos \:  \theta}{1 +  cos  \:  \theta} }  \\  \\ \sf \Rightarrow \quad   \sqrt{ \frac{ {(1 + cos \:  \theta)}^{2} }{(1 + cos \:  \theta)(1 - cos \:  \theta)} }  \\  \\ \sf \Rightarrow \quad  \sqrt{ \frac{ {(1 + cos \:  \theta)}^{2} }{1 -  {cos}^{2} \:  \theta } }  \qquad \bigg\{ \because (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \bigg\} \\  \\ \sf \Rightarrow \quad  \frac{ \sqrt{ {(1 + cos \:  \theta)}^{2} } }{ \sqrt{ {sin}^{2} \:  \theta } }  \qquad \bigg(  \because  {sin}^{2} \: \theta +  {cos}^{2}  \:  \theta = 1  \bigg) \\  \\ \sf \Rightarrow \quad  \frac{1 + cos \:  \theta}{sin \:  \theta}  \\  \\ \sf \Rightarrow \quad  \frac{1}{sin \:  \theta}  +  \frac{cos \:  \theta}{sin \:  \theta}  \\  \\ \sf \Rightarrow \quad   \boxed{  \sf \red{cosec \:  \theta + cot \:  \theta }}\qquad \bigg( \because  \frac{1}{sin \:   \theta}   = cosec \:   \theta \quad ,  \frac{cos \:  \theta}{sin \:  \theta} = cot \:  \theta  \bigg) \\  \\  \\  \underline{ \sf Some \:  Formulae} \\  \\   \sf  \star  \quad \frac{1}{cos \:  \theta}  = sec \:  \theta \\  \\  \star  \quad \sf  \frac{sin  \: \theta}{cos  \:  \theta}  = tan \:  \theta \\  \\  \star \sf \quad 1 +  {tan}^{2}  \:  \theta =  {sec}^{2}  \:  \theta \\  \\  \star \sf \quad 1 +  {cot}^{2}  \:   \theta =  {cosec}^{2}  \:    \theta

Answered by AnshuBrainly
21

\huge{\boxed{\underline{\bold{Solution:)}}}}

Attachments:
Similar questions