Math, asked by ajaypandey10, 9 months ago

1-cos theta/1+cos theta=(cosec theta+cot theta)^2​

Answers

Answered by rupeshrastogi382
3

Answer:

(cosecA-cotA)^2=1-cosA÷1+cosA

(1/sinA-cosA/sinA)^2

(1-cosA÷sinA)^2

(1-cosA)^2÷sin^2A

(1-cosA)(1-cosA)÷1-cos^2A

(1-cosA)(1-cosA)÷(1-cosA)(1+cosA)

(1-cosA)÷(1+cosA) proved

douwdek0 and 129 more users found

Answered by Anonymous
124

Correct Question :-

Prove that :- \mathsf{\;\dfrac{1 - cos\theta}{1 + cos\theta}}=\mathsf{(cosec\theta - cot\theta)^2}

To Prove :-

\mathsf{\;\dfrac{1 - cos\theta}{1 + cos\theta}}=\mathsf{(cosec\theta - cot\theta)^2}

Proof :-

\qquadL.H.S\\

\mathsf\pink{{ \:  \:  \:  \:   \:  \:  \:  \:  \: \: \;\dfrac{1 - cos\theta}{1 + cos\theta}}}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies \dfrac{(1 - cos\theta)(1 - cos\theta)}{(1 + cos\theta)(1 - cos\theta)}}\\

\qquad\sf{\red{\boxed{\sf{(a + b)(a - b) = a² - b²}}}}

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies (1 - cos\theta)(1 + cos\theta) = 1 - cos^2\theta}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies \dfrac{(1 - cos\theta)^2}{1 - cos^2\theta}}\\

\qquad\;\;\textsf{ \red{\boxed{\mathsf{1 - cos^2\theta = sin^2\theta}}}}

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies \dfrac{(1 - cos\theta)^2}{sin^2\theta}}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies \bigg[\dfrac{1 - cos\theta}{sin\theta}\bigg]^2}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies \bigg[\dfrac{1}{sin\theta} - \dfrac{cos\theta}{sin\theta}\bigg]^2}\\

\qquad\;\;\red{\boxed{\mathsf{\dfrac{1}{sin\theta} = cosec\theta}}}\\

\qquad\;\;\red{\boxed{\mathsf{\dfrac{cos\theta}{sin\theta} = cot\theta}}}\\

\mathsf\pink{{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies (cosec\theta - cot\theta)^2}}\\

\qquadR.H.S\\

\therefore\:\underline{\textsf{  \textbf{Proved..!}}}.\\

Similar questions