1 + cos theta / 1 - cos theta =( cosec theta + cot theta )²
*PROVE LHS = RHS*
Answers
Step-by-step explanation:
Given :-
(1+Cos θ) / (1-Cos θ)
To Prove :-
(1+Cos θ) / (1-Cos θ) = ( Cosec θ + Cot θ )²
Proof :-
On taking LHS :-
(1+Cos θ) / (1-Cos θ)
On multiplying both the numerator and the denominator with (1+Cos θ) then
=>[(1+Cosθ)/(1-Cosθ)]×[(1+Cosθ)/(1+Cosθ)]
=>[(1+Cosθ)(1+Cosθ)]/[(1-Cosθ)(1+Cosθ)]
=> (1+Cos θ)² / [(1-Cos θ)(1+Cos θ)]
=> (1+Cos θ)² / [1²-(Cos θ)²]
Since , (a+b)(a-b) = a²-b²
Where, a = 1 and b = Cos θ
=> (1+Cos θ)² / [1-Cos² θ]
We know that
Sin² θ + Cos² θ = 1
So,
=> [ (1+Cos θ)² / Sin² θ
=> [ (1+Cos θ)² / Sin² θ
=> [(1+Cos θ)/ Sin θ]²
=> [(1/Sin θ) + ( Cos θ/Sin θ)]²
=> (Cosec θ + Cot θ)²
Since , 1/Sin θ = Cosec θ
and Cot θ = Cos θ / Sin θ
=> RHS
=> LHS = RHS
=>(1+Cos θ)/(1-Cos θ)=(Cosec θ + Cot θ )²
Hence, Proved.
Used formulae :-
→ 1/Sin θ = Cosec θ
→ Cot θ = Cos θ / Sin θ
→ (a/b)^m = a^m / b^m
Used Trigonometric Identities :-
→ Sin² θ + Cos² θ = 1
Used Algebraic Identities:-
→ (a+b)(a-b) = a²-b²