Math, asked by aashipatel2814, 1 month ago

√1- cos theta/1+cos theta = cosec theta - cot theta​

Answers

Answered by sj9628897892
3

Step-by-step explanation:

Hope it helps dear.❤️❤️

Attachments:
Answered by hemanji2007
1

Topic:-

Trigonometry

Question:-

prove \: that \:  \frac{ \sqrt{1 - cos \theta} }{1 + cos \theta}  = csc \theta - cot \theta

Solution:-

take \: lhs  \\  \\ \frac{ \sqrt{1 - cos \theta} }{ \sqrt{ 1 + cos \theta}}  \\  \\  =  \sqrt{ \frac{1 -cos \theta }{1  + cos \theta} }  \times  \sqrt{ \frac{1 - cos \theta}{1 - cos \theta} }   \\  \\  =   \sqrt{ \frac{(1 - cos \theta {)}^{2} }{1 -  {cos}^{2} \theta } }  \\  \\  =  \sqrt{ \frac{(1 - cos \theta {)}^{2} }{ {sin}^{2}  \theta} }  \\  \\  =   \frac{ \sqrt{(1 - cos \theta {)}^{2} } }{ \sqrt{ {sin}^{2}  \theta} }  \\  \\   =  \frac{1 - cos \theta}{sin \theta}  \\  \\  =  \frac{1}{sin \theta}  -  \frac{cos \theta}{sin \theta}  \\  \\  = csc \theta - cot \theta

Hence Proved//:

More Information:-

Trigon metric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonmetric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Similar questions