√1 + cos theta by √1 - cos theta + √1 minus cos theta by√1 + cos theta is equal to 2 cos theta prove
Answers
Answered by
0
Answer:
√(1 + Cosα) /√(1 - Cosα) + √(1 - Cosα)/√(1 + Cosα) = 2Cosecα
Step-by-step explanation:
√(1 + Cosα) /√(1 - Cosα) + √(1 - Cosα)/√(1 + Cosα) = 2Cosα
=> (1/√(1 - Cosα)√(1 + Cosα))( 1 + Cosα + 1 - Cosα) = 2Cosα
=> 2/√(1 - Cos²α) = 2Cosα
=> 1/√Sin²α = Cosα
=> 1/Sinα = Cosα
=> SinαCosα = 1
=> 2SinαCosα = 2
=> Sin2α = 2
Sin2α can be from -1 to 1
so There is something wrong in Data
if RHS = Cosecα
Then LHS = 1/Sinα = Cosecα = RHS
√(1 + Cosα) /√(1 - Cosα) + √(1 - Cosα)/√(1 + Cosα) = 2Cosecα
Similar questions