Math, asked by sakshi2795, 11 months ago

√1 + cos theta by √1 - cos theta + √1 minus cos theta by√1 + cos theta is equal to 2 cos theta prove​

Answers

Answered by amitnrw
0

Answer:

√(1 + Cosα) /√(1 - Cosα)   + √(1 - Cosα)/√(1 + Cosα)  = 2Cosecα

Step-by-step explanation:

√(1 + Cosα) /√(1 - Cosα)   + √(1 - Cosα)/√(1 + Cosα)  = 2Cosα

=> (1/√(1 - Cosα)√(1 + Cosα))( 1 + Cosα + 1 - Cosα)  = 2Cosα

=> 2/√(1 - Cos²α) =  2Cosα

=> 1/√Sin²α  = Cosα

=> 1/Sinα = Cosα

=> SinαCosα = 1

=> 2SinαCosα = 2

=> Sin2α  = 2

Sin2α can be from -1 to 1

so There is something wrong in Data

if RHS = Cosecα

Then  LHS = 1/Sinα = Cosecα  = RHS

√(1 + Cosα) /√(1 - Cosα)   + √(1 - Cosα)/√(1 + Cosα)  = 2Cosecα

Similar questions