Math, asked by mamathagaikwad, 9 months ago

1 + cos theta by sin theta minus sin theta by 1 + cos theta is equals to 2 cot theta

Answers

Answered by sakshibartwal1234
48

Answer:

here is your answer mate... in the form of a picture

Attachments:
Answered by lublana
46

Answer with Step-by-step explanation:

LHS

\frac{1+cos\theta}{sin\theta}-\frac{sin\theta}{1+cos\theta}

\frac{(1+cos\theta)^2-sin^2\theta}{sin\theta(1+cos\theta)}

\frac{(1+cos\theta)^2-(1-cos^2\theta)}{sin\theta(1+cos\theta)}

sin^2\theta=1-cos^2\theta

\frac{(1+cos\theta)(1+cos\theta)-(1+cos\theta)(1-cos\theta)}{sin\theta(1+cos\theta)}

Using the formula

a^2-b^2=(a+b)(a-b)

\frac{(1+cos\theta)(1+cos\theta-1+cos\theta)}{sin\theta(1+cos\theta)}

\frac{2cos\theta}{sin\theta}

cot\theta=\frac{cos\theta}{sin\theta}

2cot\theta

LHS=RHS

Hence proved.

Similar questions